
Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-1

6 USER INTERFACE STANDARDS

6.1 Introduction

This Section defines standards to govern the development of the Project EASI/ED user interface.
These standards will enable Project EASI/ED as a whole to present a consistent user interface to
its user community.

These standards are intended to address the “look and feel” of the user interface, not how it
should function, which is application-specific. However, particularly with respect to Web-based
applications, this document provides standards with respect to techniques used in constructing the
interface. Given the scenario of multiple contractors being assigned responsibility for specific
systems and/or functional areas of Project EASI/ED as a whole, these standards will assure
uniformity in the work products that are received by SFA.

The audience to which this document is directed includes those personnel within SFA who will
be managing the effort to transform the existing Title IV systems, and the developers that will
actually be performing the analysis, design, and construction activities. Consequently, at certain
points in the document the content is of necessity quite detailed and technical in character.

This Section is organized into the following subsections:

• Subsection 6.1, Introduction
• Subsection 6.2, User Interface Standards Overview
• Subsection 6.3, Project EASI/ED User Interface Requirements and Design Goals
• Subsection 6.4, Project EASI/ED User Interface Standards

6.2 User Interface Standards Overview

This subsection provides an overview of user interface standards for Web-based, client/server,
interactive voice response (IVR), and interactive facsimile applications within Project EASI/ED.
It is organized into the following subsections:

• Subsection 6.2.1, Overview of Interface Components and Standards
• Subsection 6.2.2, Regulatory and Government User Interface Standards and Guidelines

6.2.1 Overview of User Interface Components and Standards

The following subsections provide an overview of user interface components and standards—
industry best practices, technologies, issues, and representative example products. The purpose
of this discussion is to provide readers with a technical context for better understanding the
Project EASI/ED system-wide user interface standards. It is organized into the following
subsections:

• Subsection 6.2.1.1, User Interface Standards for Web-based Applications
• Subsection 6.2.1.2, User Interface Standards for Client/Server Applications
• Subsection 6.2.1.3, User Interface Standards for Interactive Voice Response Applications
• Subsection 6.2.1.2, User Interface Standards for Interactive Facsimile Applications

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-2

6.2.1.1 User Interface Standards for Web-based Applications

This subsection provides an overview of standards that apply to the development of Web-based
applications, in order to establish a technical context for the Project EASI/ED system-wide user
interface standards for Web-based applications that are presented in Section 6.4.1 below. This
discussion assumes a basic familiarity with the concepts and terminology associated with Web-
based applications.

It is critically important to recognize that this subsection addresses standards for user interface
(UI) design for Web-based application systems, as opposed to standards for layouts of simple
“static” Websites. The difference is that with the former, a user is attempting to purposefully
accomplish something, whereas with the latter the user is essentially a passive observer (much as
if the user were watching television). Thus, the primary goal of a user interface for a Web-based
application is to help the user accomplish a task, not capture the user’s attention with eye-
catching design features.

The following topics are addressed in this subsection:

• Application Architecture. The architecture of the World Wide Web will be explained
and related to other variants of client/server distributed systems architecture, and the
implications for Web-based applications will be discussed.

• HTML. The different standards in use for HTML will be defined, with specific
emphasis on the directions being taken by the World Wide Web Consortium (W3C) as it
evolves the language.

• Cascading Style Sheets (CSS). The evolving standards for controlling the stylistic
elements of HTML page layout will be discussed.

• Dynamic HTML (DHTML). The W3C’s Document Object Model (DOM) and the
capabilities it provides for developers to create dynamic, interactive Web content will be
explained.

• XML. The significance of this “metalanguage” will be discussed, particularly in relation
to the future of HTML and the manipulation of data in Web-based applications.

• Javascript. The origins and capabilities of this powerful, industry-standard scripting
language will be explained, particularly as they apply to the development of Web-based
applications.

• Frames and Framesets. The strengths and weaknesses of this technique of employing
multiple “panels” within a browser window will be examined, especially with respect to
application design.

• Multiple Application Windows. This technique of using multiple browser
instances to replicate the conventional multi-window client/server application
interface will be discussed. Although not a standard per se, the use of multiple
application windows is a common technique in Website design.

This subsection provides a comprehensive overview of the standards and issues relevant to the
development of user interfaces for Web-based applications, ranging from how the user interface
relates to the rest of the application architecture down to specific standards with respect to details
of the “look and feel” for the user interface.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-3

Application Architecture

In order to discuss Web-based applications, one must first discuss the concept of “application
partitioning.” Application partitioning refers to the fact that a client/server software application
can be partitioned into three logical “tiers”:

• Presentation logic, which controls the display of information on the desktop “client”
• Business logic, which controls how information is processed through the implementation

of business rules
• Data logic, which controls how information is stored in the database

The Gartner Group defined a model that shows the five different ways that client/server
applications can be partitioned in terms of these logical tiers.

As shown in the diagram below, the World Wide Web is simply a variant of client/server
architecture, the “Distributed Presentation” variant in the far left column, characterized by having
only presentation logic resident on the client, and having even that partitioned between client and
server. Ironically, when the Gartner Group first published this model in the early 1990s, the

World Wide Web did not yet exist, and the Distributed Presentation variant referred to the use of
“screen scrapers” that translated character-based screens into a graphical user interface.

Figure 6-1: The Gartner Group Model of Application Partitioning

World Wide Web

PRESENTATION
LOGIC

PRESENTATION
LOGIC

PRESENTATION
LOGIC

PRESENTATION
LOGIC

PRESENTATION
LOGIC

DATA
LOGIC

DATA
LOGIC

DATA
LOGIC

DATA
LOGIC

DATA
LOGIC

BUSINESS
LOGIC

BUSINESS
LOGIC

BUSINESS
LOGIC

PRESENTATION
LOGIC

BUSINESS
LOGIC

BUSINESS
LOGIC

BUSINESS
LOGIC

DATA
LOGIC

Distributed
Presentation

Remote
Presentation

Distributed
Function

Remote Data
Management

Distributed Data
 Management

CLIENT

NETWORK

SERVER

Ultra-Thin Client Thin Client Three-Tier Fat Client Desktop Database

source: Gartner Group

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-4

However, the Web functions in a virtually identical way, since the presentation logic (in this case,
an HTML file) is downloaded across the network and rendered by the Web browser, which is a
generic engine for displaying downloaded presentation logic.

The Web browser offers the potential to serve as the “Universal Client” for distributed
applications. The software industry has seized upon the Web as a way to construct distributed
systems, based on the use of “application server” technology in architecting applications.
Application server technology, such as the Sun/NetDynamics Java application server or the
Oracle Web Application Server, utilizes an “n-tier” physical architecture comprising desktop
clients, Web server(s), application server(s), and database server(s). The business logic and the
majority of the presentation logic reside on the application server(s) as opposed to the desktop
client of the end-user. The business logic executes entirely on the application server, and the
presentation logic is downloaded from the application server to be displayed within the Web
browser. This is a tremendously scalable and flexible method of implementing distributed
systems.

In particular, this approach offers the benefits of tremendous simplification—and commensurate
cost reduction—in terms of installation, configuration and maintenance. No application client
software other than a Web browser needs to be installed on each desktop, and browsers are now
available as “freeware” from both Microsoft and Netscape. When modifications are made to the
application, they are made to the presentation logic and business logic on the application server,
and require no changes to the configuration on the desktop.

There are issues, however, with respect to constraints on how an application can be developed
using this “distributed presentation” architecture. In a conventional client/server application
constructed with tools such as PowerBuilder or Visual Basic, the operating environment for the
frontware (the client application that contains the presentation logic and typically some degree of
the business logic) is almost always known in advance and is usually a carefully controlled factor.
What distinguishes Web-based applications from conventional client/server applications more
than any other criterion is the fact that developers have no control over the environment in which
the client-side application will operate. There is a great deal of variability among the Web
browsers from different vendors, between versions from the same vendor, and even between
implementations of the “same” version from the same vendor on different operating systems.

This variability is rooted in the evolving standards that extend the capability of the Web beyond
merely the display of static text, and the degree to which the major vendors (i.e., Netscape and
Microsoft—various estimates put their combined market share between 75% and 99%) adhere to
these standards in their respective products. The standards, and the issues associated with them
and the way they are implemented, are discussed in detail below.

HTML Standards

The World Wide Web Consortium (W3C, http://www.w3.org) is an international industry
consortium, led by Tim Berners-Lee, creator of the World Wide Web. Services provided by the
W3C include a repository of information about the World Wide Web for developers and users;
reference code implementations to embody and promote standards; and various prototype and
sample applications to demonstrate use of new technology. The W3C is vendor neutral, working
with the global community to produce specifications and reference software that is made freely
available throughout the world.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-5

The current specification (labeled a “recommendation”) from the W3C for HTML is for version
4.0. HTML 4.0 builds on earlier versions (specifically HTML 3.2 and HTML 2.0) and includes
new or enhanced features in the following areas:

• CSS (explained in detail below)
• Internationalization features
• Accessibility features
• Tables and forms
• Scripting and multimedia

In addition, there are three variants of HTML 4.0, and the variant that is in use is specified by the
Document Type Definition (DTD) in the header of the HTML document. The three variants are:

• Transitional — Retains the use of deprecated (i.e., soon to be obsolete) syntax in order to
provide downward compatibility with older browsers. These deprecated tags are
primarily in the area of layout, such as the BODY tag with its bgcolor, text and link
attributes.

• Strict — Relies completely CSS for layout, with no reliance on deprecated tags.

• Frameset — Employed when HTML frames are used in the design of the HTML
documents (see below for further discussion on the use of frames).

The version of HTML most consistently completely supported by the widest range of Web
browsers is HTML 3.2, which specifies the following features:

• Head
• Body
• Block-level elements
• Lists
• Tables
• Text-level elements
• Frames within framesets (developed by Netscape and later incorporated into the HTML

3.2 specification)

The W3C is currently working on reformulating HTML as an application of eXtensible Markup
Language (XML). This will permit the modularization of HTML into building blocks that can be
used as needed by content developers. Content developers will be able to focus on utilizing
HTML components that are known to be supported by the targeted device (e.g., conventional
Web browsers, handheld computers, portable phones) as opposed to attempting to develop HTML
syntax that provides the necessary functionality even though certain features may or may not be
supported on specific platforms. XML is discussed further below.

Essentially, the W3C is attempting to stratify the construction of documents so that HTML is
used for structural markup features (headings, paragraphs, lists, hypertext links, etc.), CSS and
dynamic HTML are used for layout, and the DOM defines how elements can be manipulated at
runtime via scripting. This will increase the feature set available to content developers and
eliminate some of the practices regularly used by content developers as a workaround solution for
layout (such as the use of tables for positioning purposes), and thereby increase the likelihood that

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-6

the document will appear as intended across platforms. CSS, DHTML and the DOM are
discussed in detail below.

Cascading Style Sheets

CSS is essentially the HTML analog for the page layout parameters used for document formatting
in leading word processors. The “cascading” term refers to the fact that the style definitions in
the style sheet override stylistic elements in other parts of the HTML document (e.g., the
<BODY> tag attributes).

Despite the fact that the first draft of the CSS specification was completed in 1996 with the
cooperation of Microsoft and Netscape, neither vendor has an adequate implementation of the
first CSS specification (CSS1), and the W3C has already released CSS2. Because of the
inconsistent support for CSS among vendors and between versions from any given vendor, the
use of CSS is not widespread at this time. However, the W3C has just released a CSS1 Test Suite
to enable Web developers to validate the CSS1 support in their browsers and for product vendors
to improve CSS1 conformity.

The inability of the major browser vendors to completely implement the CSS technology without
proprietary limitations has left Web designers with a difficult choice. They can utilize CSS and
attempt to accommodate browsers that cannot parse the CSS syntax. Or, they can resort to layout
and formatting techniques that use features (primarily the functionality associated with HTML
tables) in ways that are slow, subject to variable results across browser versions and across
vendors, and not at all in accord with the intended purpose.

It remains to be seen whether the release of the CSS1 standard conformity test will ensure that the
forthcoming version 5.x browsers from Netscape and Microsoft accurately and completely
implement the CSS1 standard. Work is also proceeding on the eXtensible Style Language (XSL),
which will provide the same flexibility and expanded capabilities with respect to stylistic
elements that XML promises with respect to document markup

Dynamic HTML

DHTML offers the potential to provide Web developers with the capability to turn Websites into
a dynamic, interactive medium. However, again, Microsoft and Netscape released significantly
different implementations in their version 4.x browsers.

DHTML rests upon the DOM. As defined by the W3C, the DOM is “a platform- and language-
neutral interface that will allow programs and scripts to dynamically access and update the
content, structure and style of documents.” The informal “Level 0” version of the DOM is
equated to the functionality exposed in Netscape Navigator 3.0 and MS Internet Explorer (MSIE)
3.0. The “Level 1” specification builds on this existing technology by specifying functionality for
document navigation and manipulation of the content and structure of HTML and XML
documents. The Level 1 specification is now a W3C “recommendation”. Work is proceeding on
the Level 2 specification.

Netscape based its Navigator 4.x implementation of DHTML on a set of proprietary extensions to
HTML and Javascript on the one hand, and a proprietary “Layer” element on the other. Netscape
also developed a proprietary method (Javascript Accessible Style Sheets, or JASS) to associate
style sheets with HTML pages. Both the Layer element and JASS were decisively rejected by the
W3C, and Netscape subsequently agreed to support the W3C standards. Microsoft based its

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-7

Figure 6-2: SGML, XML and HTML

Standard Generalized Markup Language
(SGML)

eXtensible Markup Language (XML)
Hypertext
Markup

Language
(HTML)

implementation of DHTML largely on the Level 1 specification, but failed to implement the
specification completely, and included proprietary MSIE-only extensions as well.

For all its tremendous potential for creating dynamic, interactive interfaces, DHTML is “not
ready for prime time”, primarily because Netscape and Microsoft have thus far steadfastly refused
to consistently and completely implement the standard. As with CSS, it remains to be seen
whether the forthcoming version 5.x browsers from Netscape and Microsoft will accurately and
completely implement the DOM Level 1 standard and associated DHTML functionality.

eXtensible Markup Language

XML is not in itself a single markup language like HTML. It is instead a set of rules for
designing a markup language, or adding extensions to existing markup languages like HTML.
XML was developed using the Standard Generalized Markup Language (SGML), which is
codified as ISO 8879, the standard from the International Organization for Standardization (ISO)
for defining descriptions of the structure and content of different types of electronic documents.
HTML itself is a “document type” defined in SGML, and (as noted above) is being reformulated
into XML to make it more adaptable across platforms. According to the XML specification,
XML was designed “to make it easy and straightforward to use SGML on the Web: easy to define
document types, easy to author and manage SGML-defined documents, and easy to transmit and
share them across the Web.”

As shown in Figure 6-2, SGML can be used to
describe literally thousands of different
document types, and XML is a subset of SGML
that is optimized for defining new document
types and supporting delivery and
interoperability over the Web. HTML is just a
single document type among the countless
number that can be defined using XML.

The virtues of XML are that it frees Web
developers from dependence on a single,
inflexible document type (HTML), and that it
streamlines the powerful but hard-to-program
syntactical constructs of SGML.

The specific benefits of XML include:

• Web developers can design their own document types, as opposed to being
restricted to using HTML. DTDs can be tailored to a specific purpose, so that the
cumbersome tricks is required in HTML to achieve special effects should no
longer be required: Web developers can invent their own markup elements.

• The hypertext linking features of XML are vastly superior to those of HTML.
Specifically, unlike HTML, XML allows Web developers to specify the type of link
using one of the following five types: Simple, Extended, Locator, Group, or Document.
Each of these types has multiple attributes that greatly refine the control that developers
have. In fact, the Extended type allows one-to-many links, and the Group type allows
one-to-many links where the child links are treated as a set. Thus, the concept of a link
has evolved towards supporting a database-style structure.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-8

• XML can provide improved presentation and performance features on the Web.

• Information will be more accessible and reusable, because the flexible markup of XML
can be interpreted by any XML-compliant software, as opposed to being subject to the
kind of proprietary extensions and limitations that have plagued CSS and DHTML.

• XML files are true SGML files, and so can be utilized in other environments beside the
Web.

This is obviously a powerful combination. Driving an XML document by using Javascript to
manipulate the DOM, one could incorporate powerful new functionality on the client side (such
as altering the display or even sorting data) that is independent from the server. Furthermore, it
would be theoretically possible to update parts of a displayed page via contact with the server
without having to refresh the entire page. This would greatly increase the throughput of the Web
by reducing the substantial overhead associated with having to refresh an entire page any time
one of its elements changes.

XML is presently still in the experimental stages. The open-source beta of Netscape 5 (code
named “Gecko”) and Beta 2 of MS Internet Explorer 5 both nominally support XML. However,
it again appears that Microsoft is retaining its own proprietary extensions to the DOM, which has
a potentially dramatic impact on the portability of XML documents.

Javascript

Javascript is described as a “scripting” language instead of a programming language, which can
mislead people into thinking it is as simplistic as something like MS-DOS batch commands. In
fact, Javascript is a full-featured, object-oriented programming language of great power. While
the name “Javascript” is owned by Netscape (Microsoft calls its implementation “Jscript”), the
language itself has been standardized by the European Computer Manufacturers Association
(ECMA) as ECMA-262 and is on the fast track for standardization by ISO as ISO-10262. The
standard version is labeled ECMAScript to avoid any bias towards a particular vendor.

There are two types of Javascript: client-side and server-side. Client-side Javascript is embedded
in the HTML document, either at construction or at runtime using an INCLUDE file. In
conjunction with the DOM, it gives developers the ability to dynamically manipulate virtually all
aspects of an HTML document at runtime. Server-side Javascript is an alternative to Common
Gateway Interface (CGI) scripts that supports such things as file and database access on the
server side, and dynamic generation of HTML pages in response to previous events. However, it
is a much more proprietary implementation than client-side Javascript and is not nearly as widely
used.

Unfortunately, while some progress has been made in tools like Microsoft Frontpage and Allaire
Homesite in adding support for Javascript/Jscript, there is still as of this writing no tool that
provides an integrated development environment (IDE) including an editor and debugger for
Javascript programming. Thus, any sophisticated coding in Javascript must be debugged largely
by hand, and tested across a variety of browsers for compatibility.

Frames and Framesets

Although the ability to implement frames and framesets is not a “standard” per se, it has been
incorporated as a capability supported under HTML 3.2 and now HTML 4.0. What makes this

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-9

ability worthy of special attention is that the use of frames is problematic from a number of
perspectives.

Frames and framesets were an innovation from Netscape. Essentially, framesets are an
implementation of the Microsoft Multiple Document Interface (MDI) standard. Within the
“parent window” of the browser itself, an initial HTML document is loaded that defines and
instantiates the frameset. The frameset can consist of any number of frames, which are
equivalent to “child windows” in MDI terminology. Typically at least one of these frames
contains an HTML document with a menu, and selections from that menu cause other HTML
documents to load in one of the other frames, while the contents of the first frame remain
constant. This essentially allowed developers to develop Websites almost as if they were
conventional client/server interfaces with sophisticated menu bars and data windows. It
simplified layout, because the frames enforced layout designs that otherwise could only be
enforced through the use of tables for formatting content. It also simplified sophisticated
Javascript coding as well, by encapsulating document events within each separately framed
HTML document.

While on the face of it this divergence from the document model that is at the heart of the
hypertext transfer protocol (HTTP) and the Web may seem to be a positive evolutionary leap, it
has proven in many cases to be more trouble than it is worth. This is best exemplified by the fact
that even Netscape no longer uses frames on its own public Website.

There are many problems posed by the use of frames. One of the key issues is loading speed.
When a site uses frames, it must load (at least) three pages instead of one when it is first
contacted: the first page defines the frameset, and the second and third pages populate the frames
that have been defined for the frameset. From then on, there is a one-to-one equivalence with
non-frame sites in terms of page loading speed.

Another issue is how a site with frames is handled by text-only browsers such as Lynx, which are
typically used by the visually impaired to drive text readers and which do not support frames.
The W3C Web Accessibility Initiative (WAI) guidelines specify that, at a minimum, a non-
frames version should be supplied either as a link from the frames version or, preferably, as an
automatic destination with the <NOFRAMES> tags. As with any HTML, if the browser does not
recognize the element, it ignores it. Non frame-capable browsers would ignore the frameset
definition—including the <NOFRAMES> tags—but will display whatever is enclosed in the
<NOFRAMES> tags (which can be any HTML at all) because that is what is recognized. On the
other hand, frame capable browsers will preferentially display what is set up by the frame
elements, unless the browsers provide a mechanism where the display of frames can be turned
off, in which case they may display this alternative content. In any event, it means that two
separate versions of the Website must be maintained.

Finally, an issue that regularly causes confusion is the performance of the “BACK” button on the
browser when used within a site with frames. Early browsers (version 2.x and 3.x) from
Netscape and Microsoft would call up the previous Uniform Resource Locator (URL) or
frameset—not the previous frame within a frameset—when the “BACK” button was pressed.
This situation has somewhat improved with the 4.x browsers from both vendors.

Multiple Application Windows

Another feature supported by HTML 3.2 that is not a standard per se but that is worthy of
attention in its own right is the ability to utilize multiple application windows. Specifically, the

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-10

developer can designate that a link to a target document loads that document into a new browser
window, rather than replacing the calling document within the existing browser window. This
feature creates a new instance in memory of the browser itself to host the target document. There
are a number of shortcomings associated with this feature.

The primary drawback to the use of this feature is that by default the new instance of the browser
appears exactly over the existing instance of the browser. Thus, the user may assume that the
target document has simply replaced the calling document within the existing browser, and be
baffled—and rapidly irritated—when the “BACK” button is suddenly disabled.

A drawback that is nearly as serious is the impact on system resources of opening a second
instance of the browser. Unless the user’s system is equipped with a large amount of memory, a
significant degradation of performance is to be expected when more than one instance of a
browser is loaded. This performance degradation can be minimized by restricting the features
instantiated in the new instance (e.g., specifying that the new instance of the browser not contain
toolbars or that it be small in size). Nevertheless, it is possible to repeatedly open up new
browser instances until the system runs out of memory and crashes. This situation can be
rendered less likely by using a defined, constant name for the new browser instance—thus
repeated calls to the target document will simply reload it in the named browser instance instead
of creating another new instance. However, if the application offers numerous opportunities to
open new browser instances it risks freezing or crashing the user’s system.

Conclusions

The standards that have been examined above—HTML 4.0, CSS, DHTML, the DOM, and XML,
along with the capability to utilize frames and multiple application windows—offer tremendous
potential for enabling Web developers to create robust, dynamic user interfaces with virtually all
the capabilities associated with conventional client/server GUI interfaces and more. However,
primarily because of vendor intractability, the implementation of such standards has been
incomplete and/or tainted by proprietary extensions. Furthermore, most typical users do not
automatically upgrade their browsers—or any software—as soon as a new version is released,
and upgrading a browser in particular usually entails downloading a 20-30MB file on a 28.8 –
56Kbs connection. These factors have rendered the use of such cutting-edge capabilities
hazardous at best.

6.2.1.2 User Interface Standards for Client/Server Applications

The following subsections provide an overview of standards that apply to the development of user
interfaces for client/server applications, in order to establish a technical context for the Project
EASI/ED system-wide user interface standards for client/server applications that are presented in
Section 6.4.1 below. This discussion assumes a basic familiarity with the concepts and
terminology associated with client/server applications.

The following topics are addressed in this subsection:

• Application Architecture: The evolution of client/server architecture will be discussed,
with specific emphasis on its implications for user interface development.

• Graphical user interfaces (GUIs): The components of GUIs will be explained.

• Industry standards: The major industry standards for GUI design will be presented.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-11

Application Architecture

Client/server architecture was pioneered with the release of Sybase SQL Server in 1987. Until
then, applications using relational database management systems (DBMSs) such as Oracle and
Ingres were entirely host-based (e.g., COBOL/DB2 on mainframes and C/Oracle on UNIX).
Sybase introduced a number of innovative features in the SQL Server product, but foremost
among these was an open Application Program Interface (API) that let any type of software
running on a desktop access the database remotely through a network as long as the software used
the API, which enabled developers to leverage the power of software running on personal
computers. Thus, the ability to partition an application between client and server was introduced,
and it revolutionized information technology.

As shown in the Figure 6-3 below, the Gartner Group Model of Application Partitioning, there
are three variants of this architecture that are considered “conventional” client/server. As
discussed above, the Distributed Presentation variant originally referred to the use of “screen
scrapers” that translated character-based screens into a graphical user interface. However, the
Web functions in a virtually identical way, since the presentation logic (in this case, an HTML
file) is downloaded across the network and rendered by the Web browser. Conversely, the
Distributed Data Management variant refers to LAN-based implementations of “desktop
DBMSs” such as dBASE, FoxPro and Clipper, where only the shared data files reside on a

Conventional Client/Server Architectures

PRESENTATION
LOGIC

PRESENTATION
LOGIC

PRESENTATION
LOGIC

PRESENTATION
LOGIC

PRESENTATION
LOGIC

DATA
LOGIC

DATA
LOGIC

DATA
LOGIC

DATA
LOGIC

DATA
LOGIC

BUSINESS
LOGIC

BUSINESS
LOGIC

BUSINESS
LOGIC

PRESENTATION
LOGIC

BUSINESS
LOGIC

BUSINESS
LOGIC

BUSINESS
LOGIC

DATA
LOGIC

Distributed
Presentation

Remote
Presentation

Distributed
Function

Remote Data
Management

Distributed Data
 Management

CLIENT

NETWORK

SERVER

Ultra-Thin Client Thin Client Three-Tier Fat Client Desktop Database

source: Gartner Group

Figure 6-3: The Gartner Group Model of Application Partitioning

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-12

regular network file server.

Initially, the industry approach to client/server architecture used the Remote Data Management
configuration, which was labeled "two tier" (also known as "fat client"), where the data logic
resided on a server and the business and presentation logic resided on each client. The business
and presentation logic was written in Fourth Generation database programming languages (4GLs)
such as Sybase Corporation's Powerbuilder, Gupta's SQLWindows and Microsoft's Visual Basic,
or Third Generation languages (3GLs) like C or C++.

There were two main disadvantages to this kind of architecture. First, it did not scale well
beyond about two hundred users, because the DBMS on the server had to manage connections as
well as data handling. Second, each installation of the application logic had to be individually
maintained on each desktop client. The software engineer had to plan for version upgrades and
ensure that each client was running the most current release of the business logic. This led to
serious distribution and version control problems.

Scalability was also a critical problem, and the solution that arose was a three-tier physical
architecture that introduced the concept of “middleware”. The middleware could provide two
types of services. First, transaction monitors like BEA’s Tuxedo or IBM’s CICS/6000 could
offload the management of connections from the server. Second, some or all of the business logic
of the application could be moved from the client to the middleware in the form of an
“application server”. The clients would therefore execute a minimum of the overall system's
components. The user interface and some relatively stable business logic were the only things
that were executed on the clients. This greatly simplified client configuration and management.

The term "n-tier" is becoming common to describe physical architectures. While three tiers are
the maximum for logical partitioning, "n-tier" refers to the fact that a client can theoretically
connect to more than more than one application server, each of which can in turn connect to many
servers. The message flow can get quite complex. The ultimate example of this is the Common
Object Request Broker Architecture (CORBA), where a client can request an object from an
object request broker (ORB), which in turn locates and instantiates the object, which in turn may
access one or more data stores. The n-tier physical architecture also makes it easier to support
heterogeneous client devices because the client software only includes the presentation layer,
whereas the business logic and data logic reside on the server side of the network. The main
disadvantage of n-tier client/server is the complexity of designing and developing the application.
Frequently the most difficult aspect of this type of client/server application design is the process
of correctly partitioning the application.

Components of Graphical User Interfaces

GUIs are presentation interfaces between users and application software that are designed to
show information to users in graphical form. A comprehensive GUI environment includes four
interrelated components:

• The graphics library provides a high-level graphics-programming interface.

• The user interface toolkit, built on top of the graphics library, provides application
programs with mechanisms for creating and managing the dialog elements of the WIMPS
(windows, icons, menus, pointers and scroll bars) interface.

• The user interface style guide specifies how applications should position the dialog
elements to present a consistent, easy-to-use environment to the user. The standards

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-13

defined for user interface services are needed to support a consistent look and feel in
products from different vendors.

• Consistent applications ensure that the user will know how to navigate within an
application, and what to expect in response when various controls are used.

Currently available GUIs present the developer with a broad range of capabilities for obtaining
input and displaying the outputs. These range from the appearance of screen entities such as
windows and buttons down to the actions that users must perform to navigate the display and
utilize the application's functions. While this breadth of capability is powerful, it permits
applications that are built using the same GUI to appear the same but behave in different ways.

Industry Standards for GUI Design

Presently the two main contending standards for GUIs are MS Windows, promoted by Microsoft,
and X Windows, promoted by The Open Group. MS Windows is a proprietary technology of
Microsoft, while X Windows is an open standard for UNIX operating systems. With the
dominance of MS Windows in the Desktop market, MS Windows systems are also being used as
a front end to UNIX systems that would traditionally use X Windows. Currently, the MS
Windows 95 interface model is dominant in the industry. An emerging standard in this area is the
use of active Desktops and integrated Browsers as provided with MS Windows 98 and MS
Windows NT5.

The following tables present the relevant standards for the Windows and UNIX environments.
Table 6-1 presents standards applicable within the Windows environment, which is Microsoft-
proprietary.

Table 6-2 presents standards applicable within the UNIX environment, which is much more
heterogeneous. It is not a coincidence that standards are issued and supported by organizations
such as The Open Group (itself a result of the merger between the Open Software Foundation and
the X/Open Company, Ltd.), which are consortia of different UNIX hardware and software
vendors.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-14

Area Standard Comments

Toolkit and
Related Tools.

Microsoft
Win32 API

Win32 is the Windows API (set of procedure calls
and associated event mechanisms). It provides
facilities for windows creation, style, manipulation
and user interaction. It also provides toolkit
component creation (push-buttons, radio-buttons,
check-boxes, scrollbars, entry fields, drop-down list,
list boxes, menus, etc.), associated user interaction
(pushing buttons, etc.) and other facilities.

Application to
User Protocol.

“Windows Interface Guidelines for
Software Design”

This publication is produced and marketed by
Microsoft Press.

Application to
Application
Protocols

Object Linking and Embedding (OLE
2.0).

OLE is Microsoft’s application level protocol
designed to enable applications to contain objects
within them that are created and manipulated by
another application.

ActiveX ActiveX is Microsoft’s brand name for the
technologies that enable interoperability between
applications using the Component Object Model
(COM) and the Distributed Component Object Model
(DCOM).

Table 6-1: Selected User Interface Standards for MS Windows

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-15

Area Standard Comments

Toolkit Motif Toolkit API - The Open Group
C320, Apr 95

X Toolkit Intrinsics -
The Open Group C509, May 95

The Motif Toolkit API is built on the base facilities
provided by the Xlib interface and protocol. This
API provides facilities for using the toolkit
components (e.g. push-buttons, scrollbars, menus
etc.) and responding to user-interactions (pushing
buttons, etc.). It also includes a windows manager
(an application enabling the user to resize and move
windows). Motif is built on the facilities provided by
the X Toolkit Intrinsics “toolkit for toolkits”.
Applications are likely to call Xt directly.

Application to
Application
Protocols

Window Management (X11R5): File
Formats and Application Conventions
The Open Group C510, May 95

Inter-Client Communications Convention Manual
(ICCCM) is a guide for applications to run in X
Windows environments. It defines conventions for
inter-client communications (e.g. selection
mechanism, cut buffers, window management, etc.).
Conditional on this facility being required.

Application to
User Protocol

Motif 2.1 Documentation - Full Set
The Open Group T252, Oct 97

XCDE Definitions and Infrastructure
The Open Group C324, Apr 95

 XCDE Services and Applications The
Open Group C323, Apr 95

Calendar and Scheduling API
(XCS)
The Open Group C321, Apr 95

The Motif 2.1 Document Set includes the combined
CDE 2.1 and Motif 2.1 users and Style Guides, the
Motif 2.1 Programmer’s Guide, Programmer’s
Reference and Widget Writer’s Guide. The set
provides guidelines for the creation of a consistent
user interface for applications that run Motif. It
specifies guidelines on how to develop a conformant
application.

Common Desktop Environment defines a consistent
set of APIs for a common desktop environment that
can be implemented on operating environments
which support X Windows and OSF/Motif. CDE
provides end users with a consistent graphical user
interface, capable of supporting advanced multi-
media applications. It provides software developers
with a consistent set of APIs, including X11 and
Motif. Conditional on requirement existing for a
common desktop user environment in UNIX
environments.

Application to
User Protocol
(Cont.)

Window Management (X11R5): Xlib - C
Language Binding
The Open Group C508, May 95,

Window Management
(X11R5): X Window System Protocol
The Open Group C507, May 95.

The Open Group’s CDE 2.1 Documentation - Full
Set, T253, contains the combined CDE 2.1 and Motif
2.1 User and Style Guides, as well as the CDE 2.1
Programmer’s Reference and Application
Developer’s Guide.

Table 6-2: Selected User Interface Standards for X Windows

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-16

Secure Network

Data

Firewall Web Server

Ethernet

Database Server

Application Server

Internet Access

Online End-User

Interactive Voice Response Unit
with runtime engine for application scripts

Plain Old Telephone Service (POTS)

6.2.1.3 User Interface Standards for Interactive Voice Response Systems

The following subsections provide an overview of standards that apply to the development of user
interfaces for IVR applications, in order to establish a technical context for the Project EASI/ED
system-wide user interface standards for IVR applications that are presented in Section 6.4.1
below. This discussion assumes a basic familiarity with the concepts and terminology associated
with IVR applications.

The following topics will be addressed:

• Application architecture. The architecture that supports an IVR application will be
explained.

• Industry standards. The industry standards relevant to IVR interface design will be
presented.

• Representative products. Examples of applicable technology will be offered.

• Evolving standards. New directions for IVR technology will be discussed.

Application Architecture

An IVR system is one where the user utilizes a telephone to access the system. Menus are
recorded during development of the IVR application, and presented by the interactive voice
response unit (IVRU). The IVRU is typically a dedicated platform that handles incoming calls
and transmits updates and queries through the network either to an application server or directly
to the database server. Figure 6-4, Example of IVR Application Architecture, illustrates one
possible configuration.

Figure 6-4: Example of IVR Application Architecture

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-17

Many IVRUs come with proprietary scripting languages that support the construction of menus
and functions (e.g., MasterVox from MasterMind Technologies). The scripts run on top of a
runtime engine, hosted on the same platform as the telephony circuit boards, that interprets the
scripts and enables direct database access. If, however, the IVR application must access an
application server in order to leverage the business logic there, then the application server must
provide an API and the IVR application must typically be custom-coded, usually in a 3GL such
as C/C++.

The results of queries are either presented verbally to the user (the IVRU assembles the correct

phraseology out of phonemes and/or word lists) or faxed back to a number the user has provided.
IVR applications range from simple front-ends that replace a human switchboard operator to
complex interfaces with dozens of hierarchically arranged menu choices that allow users to view
account information, fulfill requests, produce reports and interface with host systems.

Industry Standards

There are several industry standards that are applicable to the development of IVR applications.
These are presented in Table 6-3.

Standard Title Organization / Standard Name Description
Telephony Application
Programming Interface (TAPI).

Microsoft TAPI: 1993 TAPI links the telephone to the
computer at the operating system
level.

User-System Interfaces and
Symbols committee.

ANSI X3V1: 1993 Voice recognition standard.

Digital audio signal interchange:
Uncompressed digital audio
systems.

ISO/IEC JTC, 1/SC18/WG9 The audio Engineering Society's
working group 9 is working on a
VMUIF.

Table 6-3: Interactive Voice Response System Standards

Representative Products

Table 6-4 presents products that support interactive voice response systems.

Product Name Vendor Product Type Applicable Standard

Internet Phone
Release 4 with video

VocalTec
Communications

Telephony TAPI

MasterMind MasterMind
Technologies

Telephony TAPI

InfoPress Voice
Response

Castelle Telephony TAPI

Voicetel Generations Voicetek Corporations Telephony TAPI

Table 6-4: Representative IVR Products

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-18

Evolving Standards

Within the past year, Motorola released a new Web-based technology called VoxML to add an
IVR interface to Web applications. This software application is based on the XML standard, and
basically replicates the graphical Web browser and HTML presentation language, so that the
“voice browser” can access the same Web server as the graphical browser does, with all the
associated functionality that the graphical browser can access. The primary selling point of this
technology is that now the same business logic and access pathways can be shared between a
conventional Web application and an IVR application, even if the presentation logic may differ
somewhat.

This product is relatively new to the market (i.e., it is not a mature technology) and has not yet
had the exposure necessary for it to become a standard. There are not enough users of this
product to warrant labeling it a standard, but Motorola is actively working with other leading
telecommunications and speech technology developers to create a broadly supported markup
language for voice applications. It is likely that within two years, there will be a widely
supported, robust IVR-specific markup language that will truly become a standard.

6.2.1.4 Interactive Facsimile

The following subsections provide an overview of standards that apply to the development of user
interfaces for interactive facsimile (fax) applications, in order to establish a technical context for
the Project EASI/ED system-wide user interface standards for interactive fax applications that are
presented in Section 6.4.1 below. This discussion assumes a basic familiarity with the concepts
and terminology associated with interactive fax applications.

The following topics are addressed in this subsection:

• Application architecture. The architecture that supports an interactive fax application
will be explained.

• Industry standards. The industry standards relevant to interactive fax interface design
will be presented.

• Representative products. Examples of applicable technology will be offered.

• Evolving standards. New directions for interactive fax technology will be discussed.

Application Architecture

Interactive facsimile refers to the ability to have users send and receive faxes in order to update
and query an application. The technology typically employs a cluster of networked fax machines
that have an interface to a fax server. The main component of this architecture is the fax server,
which distributes information to the fax machines to send a fax, and receives a fax via a
designated fax machine. The fax server can be used to output data requested via an IVR system,
incoming faxes or by on-line users.

Figure 6-5 illustrates this configuration. As shown in the diagram, the fax server includes the
following core components:

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-19

• Rendering Engine. The document must be rasterized for faxing (e.g., converting a word
document to International Telecommunication Union (ITU) group 3 format). The
rendering engine takes application output and transforms it to fax-specific output,
possibly performing file format conversions such as PostScript and HP Printer Control
Language (PCL) conversions.

• Messaging Gateway. Fax servers often use messaging gateways to link fax capabilities
to E-mail users. This may require that the E-mail gateway comply with standards such as
simple mail transfer protocol (SMTP) to support integration with the fax system.

• Client/Viewing. Fax clients allow user access to the server and support viewing,
annotation and basic manipulation (e.g., rotate, optical character recognition). Clients
can be delivered in many permutations, including HTML-based, Java-based and tightly
integrated with GroupWare (e.g., Lotus Notes). Simple integration with applications
often occurs through Windows print drivers.

• Network and Telephone Interfaces. Depending upon the architecture, the fax server
may run as a set of services in an NT, Unix, NetWare or other server environment.

• Queue Management. Sophisticated fax servers use queue management to balance loads
and reduce bottlenecks. Some fax servers are better at managing the resource pool than
others manage and can detect new servers and their resources.

• Administration/Security/Accounting. Security. These and similar, related
management capabilities are critical. Often overlooked, the administrative ease of
establishing users and maintaining logs, forms, routing tables and other support databases
is a significant variable from vendor to vendor.

Figure 6-5: The Gartner Group Fax Server Component Architecture

Rendering Engine
Messaging
Gateway

Client/Viewing
Telco/Network

Interface

Queue
Management

Administration,
Security,

Accounting

Forms
Merge

Peripherals
(e.g.,

scanner)
LCR Tables

API Layer

Host
Interface

Fax Print
Driver

Host
Outbound

(e.g., MVS)

External
Applications

Productivity
Applications

E-Mail

Groupware

Analog Line

Digital Line

PBX/IF

Directory
Synch

Directory/
Phonebook

LAN

WAN

IP Networks

File
System

DatabaseArchiveCore Components

Source: Gartner Group

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-20

Industry Standards

Table 6-5 presents standards that apply to interactive facsimile applications.

Standard Title Organization / Standard Name Description

Standardization of Group 3
facsimile terminals for document
transmission.

ITU T.4 1996 This specification provides
transmission protocols for facsimile
machines that use Group 3
compression.

Facsimile coding schemes and
coding control functions for Group
4 facsimile apparatus.

ITU T.6: 1988 This specification provides
transmission protocols for facsimile
machines that use Group 4
compression.

Procedures for Document
Facsimile Transmission.

ANSI/TIA/EIA 466-A:1966 Provides procedures used to ensure
proper transmission/reception of
data.

Table 6-5: Facsimile Standards

Representative Products

Table 6-6 presents products that support interactive facsimile technology.

Product Name Vendor Product Type Applicable Standard

Model 7033 Xerox Facsimile Group 3 Facsimile Equipment
Model 3000 Series Xerox Facsimile Group 3 Facsimile Equipment
TF601 Toshiba Facsimile Group 3 Facsimile Equipment
TF610 Toshiba Facsimile Group 3 Facsimile Equipment
UF-332 Panasonic Facsimile Group 3 Facsimile Equipment
UF-342 Panasonic Facsimile Group 3 Facsimile Equipment
FAXCOM Biscom Fax Server Windows NT, Unix compatible
Fax Sr. Omtool Fax Server Windows NT, Unix compatible
FAXLink/FAXServer Global Fax Network Fax Server Windows NT, Unix compatible

Table 6-6: Interactive Facsimile Representative Products

Evolving Standards

The latest technology with regard to facsimiles is the Group 400 (Group 4) fax machine, which
has a protocol for transmitting a fax over ISDN networks. The benefit to having one of these
machines is that the Group 400 protocol supports images of 400 dots per inch (dpi) resolution, as
compared to the Group 300 resolution of 203 by 98 or 196 dpi. With this type of resolution,
comparable to that of a laser printer, faxed items are clear, delivered quicker and more refined in
image. However, one can still use the Group 300 protocol when sending a fax to a Group 400
machine or receiving a fax from a Group 400 machine.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-21

There are several new and innovative ways to request faxes that will increase user satisfaction
and enhance the system’s performance:

• Broadcast Fax: Using faxing software and a fax server, staff can send a fax to
thousands of users in a few short steps.

• Direct Fax from Desktop: Staff can send a fax from their desktop to any user.

• E-mail Fax: Staff can have fax services tied into their E-mail system, thus making it
possible to send and receive faxes utilizing E-mail.

• Fax on Demand: This option provides the user the ability to request a document via an
IVR interface with the fax server.

6.2.2 Regulatory and Government User Interface Standards and Guidelines

There are regulatory and government compliance requirements that impact the design of user
interfaces for application systems developed by the Federal government. In particular, the
Americans with Disabilities Act (ADA) of 1990 defines guidelines and provisions for
accommodating the disabled with respect to access to public areas and information. The ADA
addresses the issue that handicapped or impaired persons have the right to equal access to all
places and information that are opened to the public.

The ADA defines who is and who is not considered legally disabled. It explains that in order to
be considered disabled, a person’s impairment must be a long-term or a lifelong problem and
must significantly limit one or more of life’s primary activities. A vital mandate that the ADA
embodies is that “places of public accommodations” be proactive to ensure sufficient
communications with disabled parties. Furthermore, the term communication applies to the
Internet as well as telecommunications.

The ADA has specific implications for Project EASI/ED. First, ED must provide special
assistance for disabled persons to utilize the services the Department offers. Next, ED must itself
abide by and require compliance with the Act by all employees when developing new systems for
the general public to access. To readily comply with these guidelines, the EASI/ED user
interface needs to support the special tools utilized by the disabled in order to operate different
access mechanisms—Web, client/server, IVR, and interactive fax—without undue interference or
complication.

In addition, user interface development should comply in all respects with ED’s own regulations
in this area. Specifically, ED’s Internet Working Group has issued its World Wide Web Policy &
Procedures (March 1998) that includes technical standards and a document submission guide.
The standards presented in subsection 6.4.1.1 of this document comply with these guidelines.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-22

6.3 Project EASI/ED User Interface Requirements and Design Goals

This subsection documents user interface requirements and design goals for Project EASI/ED. It
is organized into the following subsections:

• Subsection 6.3.1, User Interface Requirements
• Subsection 6.3.2, Design Goals

6.3.1 User Interface Requirements

The application-specific user interface requirements for Project EASI/ED are driven by several
key factors:

• The business requirements that the system(s) must support

• The types of users and the particular access requirements that each user category exhibits

• The access technology that is available to permit users to utilize the various application
components of Project EASI/ED.

However, for the purposes of this document, user interface requirements have been analyzed at a
level abstracted from application-specific implementations in order to define a set of requirements
that are generally applicable. Rather than focus on the specific business requirements that must
be supported, this analysis has instead focused on the characteristics associated with the most
fundamental operations performed with a user interface, such as creating, reading, updating and
deleting data.

Furthermore, the various types of users have been grouped into the following categories:

• Customers. This includes students, parents, and prospective students.

• Partners. This includes schools, lenders, guarantors, and servicers.

• ED Personnel. This includes all staff within the Department that will access EASI/ED
applications.

• General Public. This includes casual browsers as well as people with professional
interest (ranging from lawmakers to the press).

Within this high-level framework it is possible to derive a set of basic user interface requirements
that apply across all access methods. These can be stated as four basic principles that drive how
individual, system-specific detailed functional requirements will be determined. Although these
principles are discussed primarily in terms of user interface construction for Web-based
applications, they apply generally to all interface types (e.g., conventional client/server,
interactive voice response, etc.). These principles are:

1. The interface must accommodate (and should automatically configure itself to support) the
different user categories defined above.

Users should only be presented with the functionality that is appropriate to the user category
to which they have been assigned. This presumes that user identification and authentication

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-23

will be the first function any specific application will perform. The interface should go
further than this, however. Many commercial Websites such as amazon.com and
CDNow.com personalize the user’s experience, and this should be the approach adopted for
the EASI/ED user interface, whatever access method is being used.

Personalization in this context means that, once a user has been authenticated, the user should
be presented with all relevant information in a single, complete picture that is available from
a comprehensive, integrated set of options that have been dynamically tailored to that user.
The system should know who the person is once he or she has logged in, and provide the
person with a seamlessly integrated, customized portal into the EASI/ED environment.

2. The interface must accommodate different levels of ability among users (and preferably
provide the option to select between “modes”).

Within each user category, there will be individuals who are more experienced and who
therefore may desire a more streamlined interface that provides less assistance in performing
a given operation. An example of this is software that provides both wizards and a
conventional, event-driven set of menus. A wizard is a series of dialog boxes that guides a
novice user through a step-by-step process to perform a specific function, but it can be
restrictive and even annoying to an experienced user. Conversely, the standard interface can
be baffling to a novice.

One of the best implementations of this “dual mode” approach is Nico Mak’s Winzip
software, which in the last several versions has allowed users to specify during installation
whether Winzip should present the wizard interface or the so-called “classic” interface by
default. This selection can later be easily changed as users gain experience with the software.

This approach minimizes the likelihood that novice users will be intimidated or stymied by
the interface (and therefore place demands upon the organization for technical support). At
the same time, it reduces the frustration an experienced user would suffer while being forced
to navigate through the system using the software equivalent of training wheels.

3. The interface must minimize impediments to access.

The user interface must be designed to avoid limitations or prerequisites that (for whatever
reason) act as impediments to access. Such limitations or prerequisites would in particular
include features that cannot be utilized without first performing a potentially expensive
and/or onerous task (such as upgrading hardware or software).

With conventional client/server software, the desktop client software (also known as
frontware) typically has minimum hardware and operating system requirements that must be
accommodated if the software is to perform correctly. This is feasible since most systems
based on conventional client/server architecture are implemented in an environment where
some control can be exercised over hardware and software configuration—such as a single
branch, department, division, or even an entire organization.

However, with Web-based applications intended to be accessed over the Internet by the
general public, such control over the hardware and software configuration belonging to each
user is clearly impossible. Particularly with respect to Project EASI/ED, where the
overarching goal is to facilitate increased customer focus and accessibility of ED services,

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-24

even attempting to impose a homogeneous operating environment on such a large and diverse
user population would be fundamentally at odds with the objectives of the EASI program.

One can draw powerful lessons from the commercial world—high volume electronic
commerce sites such as amazon.com or CDnow.com typically utilize only the most basic
functionality available (e.g., tables and forms) for the client component, and all other
functionality (including data validation) is located on the server side. In addition to the
virtues of simplicity, fast loading time, reliability, and broad platform support, this approach
also has the added value that it facilitates compliance with the requirements imposed by the
ADA (see subsection 6.2.2 for further discussion of this topic). The W3C’s Web
Accessibility Initiative guidelines are very strict as to what features are acceptable with
respect to accessibility, and from the WAI perspective, a clean, simple interface is the most
accessible.

4. The interface must be consistent in “look and feel” across applications, to the point the user
does not recognize them as different applications, but rather as different aspects of a single
application.

A fundamental tenet of the most successful graphical user interface environments is that
standard configurations for the user interface components reduce the time required for users
to learn and become productive with different applications. Having the same main menu
options located in the same place on the screen, the same behaviors associated with left-
clicking and right-clicking the mouse, the same top-to-bottom, left-to-right organization of
content on the screen, all contribute to ease of use. A user will know where things are the
first time the application is loaded.

The value of this cannot be overstated. A fundamental drawback to the dissociated stovepipe
systems that typically exist in most organizations today is that each system’s user interface is
highly idiosyncratic—even those that operate within a common interface environment such as
Microsoft Windows. New rules and restrictions must be learned for each application system,
and each system provides its own limited view into the total volume of data flowing through
the organization. It is this limitation that has led both users and vendors to hail the Web
browser as the “universal client” that will provide a single, all-encompassing window into the
enterprise. However, for the Web interface to serve this purpose, a common set of design
elements must be employed, or else the chaos of the legacy systems will merely be replicated
in a new medium.

The effort to make the user interface recede into the background of the user’s attention, so
that the user can focus solely on the specific actions that he or she is performing to
accomplish defined tasks, is referred to as “transparency engineering”. In a distributed
environment such as is envisioned for EASI/ED, transparency engineering ensures that users
are not aware they may be moving from one system to another and that they do not have to
learn new ways to perform tasks in a different context. Instead, that complexity is concealed
and the user simply clicks upon a menu option or hypertext link to be seamlessly connected
to the data and functionality needed to perform a specific task—all within a single, familiar
context.

These requirements (accommodating different user categories, accommodating levels of ability,
minimizing barriers to use, and employing a consistent “look and feel”) drive the design goals for
EASI/ED user interfaces presented below.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-25

6.3.2 Design Goals

There is a growing body of work with respect to usability issues in user interface design,
particularly with respect to the Web. A number of Websites have sprung up dedicated to the
topics of good design and appropriate design techniques. Some of the best include:

• http://www.w3.org/WAI presents the W3C’s Web Accessibility Initiative guidelines.

• http://www.useit.com is the Website of Jakob Nielsen Ph.D., a leading industry usability
engineer.

• http://Webreview.com/wr/pub/Usability is Web Review’s online Usability guide.

• http://www.asktog.com is the Website of Bruce Tognazzini, founder of the Apple
Human Interface Group and former Human Interface Evangelist at Apple.

In addition, formal studies have been done to determine what constitutes “usability” and how it
can be enhanced. A good example of this is the work done by Michael Levi and Frederick
Conrad of the Bureau of Labor Statistics (BLS):

• “A Shaker Approach to Web Design” (http://stats.bls.gov/orersrch/st/st970120.htm)

• “A Heuristic Evaluation of a World Wide Web Prototype”
(http://stats.bls.gov/orersrch/st/st960160.htm)

• “Usability Testing of World Wide Websites”
(http://stats.bls.gov/orersrch/st/st960150.htm)

• “Evaluating Website Structure: A Set of Techniques”
(http://stats.bls.gov/orersrch/st/st970070.htm)

There is a good deal of consensus as to the elements that distinguish a “usable” interface. The
following design goals reflect this consensus and establish criteria by which the user interfaces
developed for EASI/ED applications can be judged to have met the requirements defined in the
preceding section.

1. Consistency

Consistency in design and layout allows users to leverage their existing knowledge to new tasks,
acquire new skills more quickly and focus on the tasks at hand, rather than on how to make the
interface operate. The user interface should have a clear and consistent conceptual structure. A
good user interface should organize and help structure the user’s activities. This is achieved by
presenting objects and actions appropriate to the tasks being performed and by specifying the
flow of activities required for carrying out the task. Consistent use of standard operations and
contents helps the user predict the results of an action before it is performed. It helps the user to
form a consistent mental model of how the user interface operates. A consistent user interface
reduces user errors and improves performance.

Similar components and concepts should be indicated using identical terminology, graphics and
commands. The user interface should comply with uniform conventions for layout, formatting,
typefaces, labeling, navigating etc. Standard functions should be reused across tasks and be
depicted in the same way in each task.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-26

2. Aesthetic and Minimalist Design

The user interface should be simple, in order to make it easy to learn and use. Simple, however,
does not mean ugly or boring—simplicity is central to the concept of elegance. This type of
simplicity can be achieved by reducing the amount of information presented to the minimum
required to communicate adequately. An effective user interface has clarity of purpose—the user
interface implicitly reveals to the user what can be done with it, thus eliminating uncertainty.

The degree to which a user interface is easy to learn depends at least partly on the complexity of
the content the user interface must present. If the content is complex, then assistance should be
provided to the user in the form of prompts, on-line help and instructions. Complexity can be
reduced by grouping related tasks together and by reducing the number of different tasks
presented at one time. Conceptual complexity can be decreased by giving a clearer picture to the
user as to how the application is organized and how different components can be accessed.
Providing only the important controls in buttons or control panels and embedding the rest in
menus can reduce visual complexity. Using words common to the user’s vocabulary can reduce
verbal complexity and misunderstandings.

3. Clear and Immediate Feedback

People like to perceive the results of their actions. With respect to computer systems, this is
particularly important. We all have had episodes where we kept hitting a key or clicking the
mouse until we received some feedback—and then the feedback we got was usually in the form
of unintended consequences, such as undesired menu options being selected or unwanted text
being entered into a document.

It is always a good practice to provide feedback for a user’s action. If noticeable, appropriate and
immediate effect is provided in response to user’s action, this allows users to quickly grasp the
logic of the user interface. This makes it more likely they will consider it easy to use, which goes
a long way towards making their experience with the interface more enjoyable.

Depending on the user interface, visual and audio cues should be presented with every user
interaction to establish that the user interface is responding to the user’s input and to
communicate details that distinguish the nature of the action. Feedback is effective if it is timely
and presented as close to the point of the user’s interaction as possible.

The three types of system feedback are:

• Status Information. Providing status information is a technique for informing the users
as to what is going on the system. Displaying the appropriate titles on a screen or menu,
or identifying the number of screens following the current one all provide required
feedback to the user. Navigational status is particularly useful in the Web environment,
since in a complex hierarchy of content one can easily lose track of the route one took
and it is not always possible in a transaction-oriented site to simply reverse course using
the “Back” button. It is especially important to provide status information during
processing operations that take more than two seconds, to prevent the user from believing
the system is simply inactive.

• Prompting Cues. Displaying prompting cues is another type of feedback. When
prompting the user for information, it is a good practice to be specific in your request. A

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-27

typical example of such a prompt would be: “Enter the nine digits of your Social Security
number.”

• Error and Warning Messages. Error and warning messages are a critical method of
providing system feedback. Messages should be simple, specific and free of error codes
and technical terminology. Error messages should appear in approximately the same
format and placement each time so that they are easily recognized as error messages.
Icons such as a stop sign and color-coding for severity (e.g., red and yellow) also increase
the impact.

4. Prevention of Errors

A key component of good interface design is to reduce the possibility of user error through
predefining the options from which users may select. For example, a command line interface is
the most difficult for new users to learn, because they must master both a large vocabulary of
command keywords and a frequently cryptic command syntax.

Conversely, the use of pulldown menus, radio buttons, and check boxes reduces the likelihood of
errors because users can only select from among correct options. Such unambiguous controls
will increase both the speed and accuracy with which a given task can be performed, and thus
users will perceive the interface to be easier to learn and use.

Confirmation of significant operations is also an important technique to prevent errors. By
requiring users to confirm that they want to perform an update or deletion, this minimizes the
likelihood that such an operation will occur inadvertently. Providing an Undo feature and
graceful ways to exit an operation if the user changes his or her mind is also extremely important.

However, a caveat is appropriate. As stated in the preceding subsection, one of the user interface
requirements for Project EASI/ED is that the interface must accommodate different levels of
ability among users (and preferably provide the option to select between “modes”). Thus, in
certain situations, it is advisable to offer the option to streamline a user’s interaction with a
system so that an experienced user does not feel trapped in a Web of restraints obviously
designed to protect a tentative novice from self-injury.

5. Subjective User Satisfaction

Subjective user satisfaction is the response to good design. Good user interface design is
consistent, unambiguous and self-explanatory, and (for Web applications and client/server
systems) pleasing to the eye. This last element should not be underestimated: what is pleasing to
the eye is not just a function of color choice or the appeal of certain graphics. The human mind
responds to bilateral symmetry and balance, and at least in the U.S. and Europe, we are trained
from an early age to read left to right, top to bottom. Thus, what is pleasing to the eye in Web
page design includes a certain visual order that is readily comprehensible, and is easily
recognized as analogous to the printed page.

Perhaps the most important component of subjective user satisfaction, however, is when the user
feels in control of the interface and is able to produce the required results without difficulty or
undue effort. As stated earlier, to the degree that the user interface effectively disappears so that
the user can concentrate almost entirely on completing the task at hand (instead of on making the
interface perform the functions the user needs it to), then the user interface design is successful.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-28

6.4 Project EASI/ED User Interface Standards

This subsection presents the Project EASI/ED user interface standards and design guidelines that
address the user interface requirements and design goals defined in the previous subsection. This
subsection is organized into the following subsections:

• Subsection 6.4.1, Project EASI/ED User Interface Component Standards
• Subsection 6.4.2, Project EASI/ED Web/Internet Application User Interface Model and

Navigation Strategy

6.4.1 Project EASI/ED User Interface Component Standards

This subsection defines the standards to be employed for the development of Web-based,
client/server, interactive voice response, and interactive facsimile components of the Project
EASI/ED user interface. This subsection is organized into the following subsections:

• Subsection 6.4.1.1, User Interface Standards for Web-based Applications
• Subsection 6.4.1.2, User Interface Standards for Client/Server Applications
• Subsection 6.4.1.3, User Interface Standards for Interactive Voice Response Applications
• Subsection 6.4.1.4, User Interface Standards for Interactive Facsimile Applications

6.4.1.1 User Interface Standards for Web-based Applications

This subsection specifies the user interface standards that are recommended with respect to Web-
based application development under Project EASI/ED. The following topics will be addressed:

• Screens
• Windows
• Reports
• Development languages and tools
• Naming conventions
• System security
• System/user documentation and online help

The standards proposed in this subsection reflect the analysis of industry standards presented in
subsection 6.2.1.1. These proposed standards also embody the design goals identified in Section
6.3.2, and comply with the technical standards included by ED’s Internet Working Group in its
World Wide Web Policy & Procedures (March 1998). The proposed standards have also been
implemented in a fully interactive demonstration prototype hosted at
http://www.easi.ed.gov/prototype, which is considered Appendix D of this document. A Project
EASI/ED Web/Internet Applications User Interface Format and Style Guide that documents that
the standards embodied in the prototype is included as Appendix H of this document.

As stated earlier, it is critically important to recognize that this document specifies standards for
user interface design for Web-based application systems, as opposed to standards for layouts of
simple “static” Websites. The difference is that with the former, a user is attempting to
purposefully accomplish something, whereas with the latter the user is essentially a passive

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-29

observer (much as if the user were watching television). Thus, the primary goal of a user
interface for a Web-based application is to help the user accomplish a task, not capture the user’s
attention with eye-catching design features. Furthermore, a greatly increased emphasis is placed
upon scalability, reliability, maintainability, and accessibility.

Within that perspective, the foremost standard proposed in this document with respect to the
development of Web-based user interfaces is to strictly adhere to the Distributed Presentation
configuration described in subsection 6.2.1.1. To reiterate a point made earlier, it is important to
understand the distinction between a conventional client/server application, where the operating
environment of the client is known and even controlled, and the Web, where the operating
environment is almost always not known in advance and cannot be controlled. Equally important
to recognize is that by law (e.g., the ADA), government Websites are required to make reasonable
accommodations for disabled users, which in this case is typically interpreted as referring to the
visually impaired.

There are two responses to this situation: write browser-specific code and restrict user access to
only the supported browser; or, write browser-independent code and support virtually anything.
The latter approach typically implies placing all data validation and other types of business logic
on the server, so that the presentation logic handled by the browser is only for display of
information and capture of input.

Thus, one sees major commercial sites that process thousands of transactions per day (such as
amazon.com and CDNow.com) adopting the latter approach, and that approach is also
recommended also for Project EASI/ED. The intent is for the user interface for Web-based
applications to be the “thinnest” of “thin clients” possible, which should minimize the possibility
of browser incompatibilities interfering with the operation of the design. To the extent that some
of the features identified above (e.g., CSS and DHTML) are employed, they must be incorporated
in such a way that the features degrade gracefully when the HTML page(s) are viewed with
browsers that do not support those features. They should not be employed in critical functional
areas such as data validation or form operation, unless the Department of ED specifically
authorizes an exemption that restricts users of a specific application to certain browser technology
that supports the feature(s) in question—and there should be an overriding business reason
driving that decision.

This approach places the least possible burden upon the user in order for the user to have access
to Project EASI/ED Web-based applications. Such “frictionless” interaction with customers is
critical to achieving efficient, customer-friendly systems that make the process of getting
financial aid to students simpler, easier, faster—and cheaper.

With respect to the specific technical standards discussed in subsection 6.2.1.1, the following
recommendations are made:

• HTML. Since it is uncertain whether even the version 5.x browsers from Microsoft and
Netscape will support HTML 4.0 completely and accurately, and earlier versions clearly
do not, it is recommended that HTML 3.2 be considered the operational standard for the
foreseeable future.

• CSS. Because of the inconsistent support for CSS among vendors and between
versions from any given vendor, the use of CSS for Web-based ED applications
to be accessed by the general public is discouraged at this time. If CSS is

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-30

implemented, it should only be implemented alongside (and therefore,
superfluously to) format and layout syntax allowed under HTML 3.2.

• DHTML. The use of DHTML should be implemented only to the degree that it can be
implemented consistently across platforms and constructed so as to degrade gracefully on
browsers that do not support it.

• XML. To the degree that support for XML is available in current browsers, it is
nonetheless incompletely implemented and inconsistent between products from different
vendors and versions from the same vendor. It therefore should not be employed until it
is reliably supported.

• Javascript. Because only a subset of Javascript/JScript functionality is supported by
both Netscape and Microsoft, developers need to be cautious and thoroughly test their
scripts in both environments. Furthermore, some browsers (Microsoft IE 3.x and the
text-only Lynx browsers in particular) do not support Javascript, which limits the uses to
which Javascript can be applied. It should generally be limited to aesthetic effects such
as highlighting of menu options.

• Frames and framesets. Given the navigational difficulties posed by the use of frames
and framesets, not to mention the configuration management issues raised by having to
maintain both a frames version and a non-frames version, the use of frames is strongly
discouraged.

• Multiple application windows. Because it is possible to repeatedly open up new
browser instances until the system runs out of memory and crashes, opening up new
browser instances as popup windows should be done very cautiously if at all. The new
browser instance should use a constant name, so that repeated calls to target documents
will simply reload them in the named new browser instance, instead of opening multiple
new instances.

The following paragraphs present more general standards for the development of user interfaces
for Web-based applications.

Screens

Within the context of Web-based applications, “screens” are defined here as the HTML pages
that are displayed. Figure 6-6 presents the layout that is recommended for Web-based application
development under Project EASI/ED. This design will ensure that Project EASI/ED Web-based
applications will have a consistent appearance and structure that will minimize the time required
for a user to learn how to navigate in an unfamiliar application.

This screen design implements the EASI/ED design goals through two key features. First, the
design leverages the deeply ingrained tendency of most people in the Western world to read left-
to-right and top-to-bottom. Second, the design is based upon the categorization of content into
broad functional areas, each comprising topics that are then decomposed into sub-topics of
increasing specificity. Specific explanatory content associated with each topic or subtopic should
be displayed in the content area, so that no link is purely a “category” link (i.e., simply a link to
another link). This hierarchical structure allows users to get a broad overview of the content and
“drill down” to the desired level of detail. Because it balances breadth and depth, it represents the
most efficient structure of content in order to minimize the effort required to navigate to desired
information.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-31

Figure 6-6: EASI/ED Standard Screen Layout

This is particularly the case because the interface design applies to application systems, not
publication of static content. Recent research (Spool, 1998) has shown that sites that specialize in
publishing content (especially those typically labeled “portal” sites) benefit in terms of usability
from “flattening out” the content hierarchy, so that more links are “content” links as opposed to
“category” links, especially when these “content” links are grouped by function into ordered lists.
This is because the time required to find a specific piece of information increases as the number
of links required to find the specific piece of information increases.

However, the same research has shown that while some people like sites that are easy to navigate,
others like sites because they like the content, irrespective of whether the site is optimized for
navigability. The conclusion one must draw, then, is that to please all of the people all of the
time, one must balance ease of access with making the content as visually appealing as possible,
and that is what this design is intended to accomplish.

With a user interface design that applies primarily to application systems, the assumption is that
the structure of choices will be relatively narrow in breadth and relatively shallow in depth
compared to a conventional, “informative” site. In striking a balance between breadth and depth,
designers should conduct usability testing to confirm whether a given design optimizes that
balance from the perspective of end users.

For applications that require the user to input data, the various objects of the data entry form
should be restricted to the area designated for content, although it may expand to the left since the
menu of specific options is generally not present on a page with a data entry form. It is important

LOGO

MENU OF BROAD FUNCTIONAL CATEGORIES

MENU OF
SPECIFIC OPTIONS

LOCATION IDs AND
LINKS TO UPPER-

LEVEL OPTION
PAGE(S)

CONTENT

Department of Education (graphic)

Page Name

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-32

to recognize that while it is possible to build a long form where the user must scroll down in order
to see it all, this is not recommended for general users for two reasons. First, the user may not
realize there is anything below the bottom margin of the browser window, and may think an
operation has been completed when in fact it has not. Second, longer forms increase both load
time and the time required to process the transaction (since more data is being posted). Thus, the
“apparent speed” of the application may well be slower with a longer form, even though smaller
form sections that require the loading of multiple HTML pages may take longer in terms of the
total time required to complete an operation.

In designing forms to accommodate “power users”, it may be desirable to put the entire form on a
single page where the user must scroll through it. If this is the case, the fact that the page is
longer than a single screen should be indicated at the top of the page, and the buttons to submit
the form should be at the bottom, so that it cannot be inadvertently submitted before it has been
completed.

The implementation of data validation routines merits special concern. People accustomed to
using—and building—conventional PC-based applications, particularly conventional client/server
applications, have a deeply rooted expectation that validation of input will be immediate. This
validation typically occurs at the data element level, and includes such techniques as input masks,
range checks, and specific methods associated with the data entry field that perform more
sophisticated checks.

However, as discussed above, Web-based applications operate under a different set of constraints
than conventional applications. In particular, while designers of conventional applications design
for an operating environment that is known in advance (and frequently subject to strict control),
designers of Web-based applications do not know in advance what the operating environment
will be, and are confronted with myriad operating environments—Web browsers—that vary
significantly in their support for basic standards.

Data validation should therefore be performed on the application server, not on the client-side
form. This is because methods of implementing client-side data validation (e.g., Javascript) are
not uniformly supported by all browser types, and even where they are supported, they can still be
circumvented either accidentally or deliberately. Placing the validation on the server reduces the
burden on the user, by not requiring them to download and install a specific version of the
browser to utilize the application. It reduces the burden on the developers, by not requiring them
to repeatedly verify that the validation code works on browsers from different vendors, and on
browsers from the same vendor running on different platforms. Only in cases where there is an
overriding business requirement (such as FAFSA On The Web) should data validation be
performed using a client-side implementation.

A critical concern in all applications is ensuring that data integrity is protected, and this concern
is heightened with the attenuated, “stateless” connections between client and server that
characterize Web-based application systems, where the browser does not maintain a single
persistent connection with the server through the network. Placing all data validation on the
application server ensures that transactions retain the so-called ACID properties (atomicity,
consistency, isolation and durability) required to ensure data integrity. The application server is
able to maintain “state” during transactions, thus establishing a session that appears continuous to
the database server, in order to ensure data integrity.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-33

Windows

Within the context of Web-based applications, “windows” are defined here in terms of the
attributes of the browser instance used to render HTML pages. These attributes are a function of
two aspects of the user’s display: screen resolution and color depth.

It is necessary to lay out HTML pages that degrade gracefully as either screen resolution or color
depth are reduced down to a specified minimum level. This minimum level of screen resolution
for Web applications developed for Project EASI/ED is a resolution of 640 pixels wide by 480
pixels high, which is the VGA standard resolution. Even though most graphics cards and
monitors now support greater resolution, many users leave their machines configured at VGA
resolution because of small (less than 17”) screen size. It should be noted that the actual width of
the browser’s display is approximately 600 pixels or less because of the browser’s own window
borders. Width is the more important consideration, since at 640 x 480 resolution a browser with
all tool bars visible presents a relatively small amount of vertical space for the display of content
and scrolling may be unavoidable.

Color depth is defined in terms of the number of bits per pixel used to store color information.
The industry standard color depth scale is as follows:

1 bit = 2 colors
4 bits = 16 colors
8 bits = 256 colors
15 bits = 32,000 colors
16 bits = 64,000 colors
24 bits = 16,000,000,000 colors

The minimum standard color depth for Web applications developed for Project EASI/ED is 8 bits
per pixel, which provides a 256-color palette. This is greater than the VGA default of 4-bit color,
but realistically most monitors and graphics cards now support a minimum of 8-bit color and are
configured that way at the factory. In reality, however, an evenly distributed palette that has 256
or fewer colors, and which is based on whole number values for the RGB triplets (the indices
indicating the proportion of red, green and blue in a given hue), should contain 216 discrete
colors. Thus, there are 40 palette slots not being used, which are at least partially reserved by the
operating system (particularly the 20 system colors reserved by Windows). The use of the 216-
color browser-safe palette will ensure that colors display accurately across platforms, and also
that image quality will not be degraded by color dithering (dithering occurs when the operating
system attempts to replicate a color outside its palette by interweaving two other colors).

The question of color depth applies mainly to graphics. Text should generally be in black, the
background should be white, and the color of links should not be altered within the HTML code
from the browser defaults. This facilitates legibility and gives the interface a crisp, clean look.

Reports

Generating reports over the Web presents unique problems, because browsers are typically
equipped to print only the HTML page that is currently displayed. There are three approaches to
coping with this situation:

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-34

• Write out the report as a file. This file should be in a specified format (e.g., PDF,
which has become a de facto industry standard) that can then be downloaded or emailed
to the user.

• Output the report as HTML to the browser. It should be noted that sending a report
(or a results set from a query) directly to the browser as HTML runs the risk of exceeding
the browser’s capacity to render the information. Thus, a result set from a query should
be broken down into groups of between 5 to 20 records (depending in the amount of
information per record) and sent to the browser as individual pages with one group per
page. Similarly, if a report is sent to the browser as HTML, it should be sent as a series
of separate pages instead of one voluminous document that must be rendered in its
entirety.

• Use a report viewer. Because of the limitations of HTML, many report writer vendors
provide a downloadable viewer (frequently a Java applet) for displaying reports online.

If more than one option is provided, the ability to select the output format should be provided to
the end user prior to the report being generated.

When selecting a Web-based reporting tool, careful consideration must be given to the types of
reports that must be generated. Usually a specialized report server is required. These are
available from a number of companies and provide a number of options for viewing and printing
reports. Some products are optimized for ad hoc reporting by end users, while others are
designed primarily for production reporting where the user has little or no control over the output
once parametric report criteria have been submitted to the report server.

Development Languages and Tools

As stated above, the recommended development language of the presentation logic tier of Web-
based applications under Project EASI/ED is HTML 3.2, with the option to use limited amounts
of Javascript for essentially aesthetic purposes. At the present time, HTML 4.0 is not yet
completely and accurately implemented in browsers, and given the necessity of maintaining
downward compatibility, a “strict” HTML 4.0 Web page would be unacceptable. Refer to
Section 6.2.1.1 for a discussion of the standards with respect to development “languages” for
Web-based interfaces.

Development languages could also reasonably be construed as including Java and ActiveX
components (which can be constructed in a variety of languages), but the downloading of applets
or ActiveX controls represents a shift to the Remote Presentation architecture that contravenes the
recommendation that Project EASI/ED adopt a strict Distributed Presentation architecture for
Web-based applications. Therefore, these languages are not included in the recommended
standards.

There are a plethora of development tools for constructing Web pages. There are fewer (but still
a great and growing number) that are optimized for the development of Web-based applications.
These typically are associated with specific application server technology (e.g., Microsoft
FrontPage with the Microsoft BackOffice products, Allaire’s Cold Fusion Studio with its Cold
Fusion middleware), so the selection of particular application server technology will be an
important driver in the type of development tool that is employed in the construction of the Web-
based user interface.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-35

For coding straight HTML, the tool to be selected can be largely left up to the developer’s
preference. However, it should be recognized that tools that emphasize WYSIWYG (what-you-
see-is-what-you-get) design typically generate HTML code that is less efficient than HTML that
is constructed with the more “coding oriented” tools such as Allaire’s Homesite. The
WYSIWYG tools may also use syntax that is version-specific or vendor-specific with respect to
browser functionality.

This is particularly the case with word processors such as MS Word that convert a document to
HTML, where such conversions typically resort to cumbersome and frequently misapplied syntax
in an attempt (usually unsuccessful) to replicate the visual appearance of the original document.
These tools should not be used.

Naming Conventions

The primary aspect of importance with respect to naming conventions in the user interface design
of Web-based applications is comprehensiveness. For example, it is important that all objects
such as graphics and links have clear verbal descriptions provided through the ALT attribute of
the tag defining the object, in order to facilitate the use of text-only browsers. Similarly, all
elements referenced through Javascript should be identified uniquely and descriptively with the
NAME attribute, in order to render the code readable and easily maintainable.

Furthermore, with respect to the naming of files such as HTML pages themselves, several rules
should be followed. Because UNIX systems are case-sensitive and Windows 95/NT systems are
not, all filenames should be lowercase. UNIX systems also do not permit spaces in long
filenames, whereas Windows 95/NT systems do, so no spaces should be used in long filenames.
The example below presents correct formatting:

Large Company Logo.GIF becomes large_company_logo.gif
or large-company-logo.gif
or largecompanylogo.gif

Because underscores between words in a long filename can be obscured by the underlining that is
the standard indicator that a specific block text is a hyperlink, it is recommended that underscores
not be used as separators between words in an HTML document filename that will be part of a
URL. The adoption of a naming convention that, as described above, is a subset common to the
major file systems will ensure portability of documents across platforms.

Another issue with respect to naming conventions is the use of relative path names when
referencing files. When coding for the directory structure, only relative path names should be
used. This preserves the portability of the HTML code across platforms. If path names are
hardcoded and the site is rehosted, it is virtually certain that the HTML code will have to be
adjusted, perhaps significantly.

Thus, an HTML page in the HTML directory should use syntax such as the following when
referencing components located in a different directory:

IMG SRC=“../images/test.gif”

This ensures that the entire directory structure can be picked up and moved without any
adjustments having to be made to file location specifiers in the HTML pages. Developers should

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-36

be aware of configuration parameters within the development tool that may automatically alter
how such path specifiers are formulated as objects such as graphics are placed within the HTML
page.

System Security

System security is particularly an issue with application systems that process transactions
(especially financial transactions), as opposed to systems that merely publish information.
Security technology in this area is evolving at an understandably rapid rate, but it remains
problematic.

The issue of system security with respect to Web-based application systems can be broken into
three major areas: privacy; authentication; and integrity.

• Privacy in this context refers to ensuring that only authorized users have access to
information about an individual.

• Authentication in this context refers to both the client and server proving to each other
that they are who they say they are. In particular, with respect to a single transaction,
authentication refers to proof of authorship.

• Integrity in this context refers to defending against tampering with data on the network,
which includes encryption of data and ensuring that a given transaction is posted only
once (a major concern in the “stateless” environment of the Web).

Although authentication raises issues with the user interface (specifically in terms of requirements
relating to passwords or other authentication mechanisms), both “privacy” and “integrity” as
defined above are almost completely functions of the application architecture on the host (server)
side of the network. These issues are discussed in detail in Section 3. The word privacy is also
often used in a broader sense to relate to policies on what information is collected electronically
about individuals and how it is used. ED should develop a standard privacy policy statement
applicable to all ED Websites, and a link to this policy statement should be placed on the initial
(“splash”) page of every ED Website.

System/User Documentation and Online Help

System documentation should include every document describing the implementation of the
system from initiation to operation, with the specific documents depending upon the mandates of
the software development methodology that has been employed. Section 2, Framework for
Blueprint Delivery, discusses the lifecycle methodology that ED has adopted.

User Documentation presents a product description for the user, including the operation of the
system after implementation.

User Documentation may include the following:

1. Functional description, which may include:
1. A summary of the system.
2. An outline of system requirements.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-37

3. A short description of services provided by the system.

2. Introductory manual, which may include:
1. An informal preface to system.
2. A description of normal usage of the system.
3. Suggestion on "How to get started".
4. Explaining the use of common facilities/functions.
5. Examples of how to use the system.
6. Advice on how to recover from mistakes.

3. System reference manual, which may:
1. Detail system commands and their usage.
2. Furnish a listing of error messages and how to recover from detected errors.

4. System installation document, written for system administrators. This may include:
1. How to install the system on a specific environment.
2. A description of the media the system is supplied on, files of the system, minimal

hardware configuration required, permanent files established after installation,
and how to start the system.

5. System Administrator's manual. This may:
1. Describe the messages generated when the system interacts with other systems

and how the system administrator should react.
2. Contain procedures to maintain the hardware.
3. Explain how to clear faults on the system console.
4. Give a general synopsis of the system.

6. Quick reference card, which may cover relevant short cuts.

7. On-line help systems.

Because Web-based applications are typically intended to support very large user populations,
providing users with hardcopy documentation is typically not feasible. It is possible, however, to
post documentation in electronic format so that users can download it at their convenience and
print it out themselves. It is strongly recommended that complete user documentation for each
specific Web-based application be posted, preferably in a choice of formats such as Microsoft
Word or PDF, so that users can obtain comprehensive instructions for using the application.

Online help is a more complex issue, for two reasons. First, the developer has no control over the
environment in which the application will execute (i.e., the Web browser), and that environment
is highly variable, unlike the operating system environment in which a conventional client/server
application executes. Second, the “stateless” nature of the Web constrains the methods that can
be used to display online help as distinct from the application itself. A number of creative
solutions are presented below, along with the respective shortcomings of each approach.

• Balloon Help. In a conventional client/server application, for example, it is possible to
implement “tool tips”, or “balloon help” as it is often termed, which displays a small
descriptive label for a given object when the mouse is positioned over it for a certain
length of time. Such a feature can be emulated in version 4.x browers by using the ALT
tag or through the use of DHTML. The former technique is a misuse of the ALT tag,
which is intended to provide an “alternate text description” for images. Furthermore, the

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-38

technique fails to display anything in Netscape Navigator 3.x. The latter technique has
the unfortunate shortcoming that it fails to hide the text of the “tool tip” at all in browsers
that do not support Cascading Style Sheets.

• Specialized Help Pages. A simple technique to provide access to online help is to put in
a link to a specialized help page. The drawback to this technique, however, is that it
forces users to leave what they are doing and go to a new HTML page, and then return.
Particularly in a Web-based application where transactions are being processed, it is not
desirable to disrupt the transaction by jumping to and from a separate help page.

• Popup Help Windows. It is possible to implement popup windows that do not cause the
entire HTML page to refresh through the use of additional browser instances (see Section
6.2.1.1). Through a relatively simple Javascript function, one can define a new browser
instance stripped of toolbars and menus and launch it with an HTML page that is
specified as a parameter when the function is called. The call to this function could then
be linked to a button that is part of a menu or is located adjacent to a graphical control
(such as a simple data entry field) that merits additional explanation. As discussed in
Section 6.2.1.1, the name of the new browser instance (the second parameter) should be a
constant, so that one does not exhaust available memory by instantiating numerous
distinct instances of the browser. This method also relies on Javascript, which some
browsers do not support.

The recommended approach to implementing online help in Web-based applications is to
construct the online forms as if they were “wizards”, the step-by-step sequence of dialog boxes
that Microsoft developed for making complex tasks easier for novice users. Wizards have
become familiar to most people who work with computers, either because people have seen a
wizard in an application like Microsoft Word, or because they have used an installation routine
like those of InstallShield to install a piece of software. Using this approach, one can break the
data entry form into pieces that fit on a single HTML page without requiring that most users
scroll down to view the entire form, and include in each section of the form the appropriate text
instructions to answer in advance any questions the user might have.

By anticipating the questions the user might have and providing the answers in advance, this
approach minimizes the frustration the user encounters in using the system. When reading the
instructions on each section of the form, users are utilizing the online help without realizing they
are doing so. This comes the closest to creating a self-explanatory interface that recedes into the
background of the users perception so that users focus primarily on accomplishing the task they
wish to perform, not on how to use the tool to accomplish the task. The only caveat is that it may
be desirable to create a less “friendly” version of the form that is optimized for data entry speed,
and offer the option to users to access these forms by using the system in a “power user” mode.

6.4.1.2 User Interface Standards for Client/Server Applications

The following subsection specifies the standards that are recommended with respect to
client/server application development under Project EASI/ED. The following topics are
addressed:

• Screens
• Windows
• Reports

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-39

• Development languages and tools
• Naming conventions
• System security
• System/user documentation and online help

The standards proposed in this subsection reflects the analysis of industry standards presented in
Section 6.2.1.2. These proposed standards also embody the design goals identified in Section
6.3.2.

Screens

With the context of client/server applications, "screens" are defined here as the layout of
information that is presented on a display monitor. Depending on the task being performed by
the application, the screen design requirements will vary.

In general, screen designs should adhere as closely as possible to those for a Web-based
application user interface, described in the preceding subsection. There are three key caveats to
this direction, however, that have to do with features that can be used in the client/server
environment that either do not exist or are not recommended in the Web environment.

The first feature that is common in the client/server environment but not readily supported in the
Web environment is a complex menuing system. Unlike the Web-environment, development
tools in the client/server environment support the creation of menu bars, pulldown menus, and
popup menus that are linked into a cohesive mechanism. The screen layout presented for Web-
based applications should be adapted to accommodate the menuing system (i.e., the main menu
bar across the top of the screen should have pulldown menus from each main menu pad, instead
of menu options on the left side of the screen).

Another feature that is easily accomplished in the client/server environment but that is not
recommended in the Web environment is immediate, client-side data validation. The capabilities
here range from input format masks to range checks to complex methods encapsulated within
each interface object that ensure only valid data is written from the client to the database. These
capabilities should be used as extensively as possible, subject to the constraint that hard-coding
data for lookup tables or building in business rules that are likely to change should be avoided.

The third feature is online help, which is discussed in detail below.

Windows

In virtually all widely-used GUIs, a window provides the visual means by which the user can
interact with an application program. The results of the command or data input by keyboard,
mouse, or other devices are displayed in a window. It provides context for an application; all
interface objects are organized and presented in windows. Windows provide a means of viewing
and editing information as well as viewing the content and properties of objects.

A window is typically rectangular and covers part or all of the display screen. In additional,
multiple windows can be displayed at one time. Consistency in window design is particularly
important because it enables users to easily transfer their learning skills and focus on their tasks
rather than learn new conventions. Commercial GUI designs provide a number of basic functions

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-40

thus allowing the user to control window operations. Some of the features that most of the GUIs
provide are:

• By opening a window, a task or application is started.
• By closing a window, a task or application is stopped.
• Scrolling allows the user to view the information within a window, even that which is

outside the normal boundaries of the window.
• Windows can be stacked on top of each other.
• Windows can be simultaneously presented by either using the tiling or overlapping

approach.

There are a number of different types of windows, distinguished by the functions they serve and
specific behavioral characteristics:

A primary window provides the location of the main user interaction with the application. As
shown in Figure 6-7, a typical primary window consists of a frame (or border) which defines its
extent and a title bar which identifies what is being viewed in the window. The window can also
include other components like menu bars, toolbars, and status bars. Primary windows are
independent of each other.

Figure 6-7: Example of a Primary Window

Microsoft has distinguished between Single Document Interface (SDI) applications, where there
is a one-to-one relationship between the primary window and the content object, and Multiple
Document Interface (MDI) applications, where the primary window represents an instance of the
application, and visually contains a set of related document or child windows. Each child
window is essentially a primary window, but is constrained to appear only within the parent
window instead of on the desktop. The parent window also provides a visual and operational
framework for its child windows. For example, child windows typically share the menu bar of
the parent window and can also share other parts of the parent's interface, such as a toolbar or
status bar. Microsoft Notepad, for example, is an SDI application, whereas Microsoft Word,
Excel, PowerPoint and Access are MDI applications.

With respect to either SDI or MDI applications, however, there should be one and only one
primary window for each instance of the application. With some applications it is possible to
open multiple instances of the application simultaneously—in such a situation, each instance will
have its own primary window.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-41

Most primary windows require a set of secondary windows to support and supplement a user's
activities in the primary windows. A typical secondary window, as shown below in Figure 6-8,
includes a title bar and frame; a user can move the window by dragging its title bar. However, a
secondary window does not include Maximize and Minimize buttons because these sizing
operations typically do not apply to a secondary window. A Close button can be included to
dismiss the window.

Secondary windows, if used, must be related to a primary window. Moreover, secondary
windows can call other secondary windows and are either modal or modeless. Modal windows
require a user to complete or abandon an operation before the user can perform a task in another
window. Modal secondary windows restrict the user's choice, and thus should be used sparingly.
System modal secondary windows should only be used for serious problems, for example, bad
media errors.

Figure 6-8: Example of a Secondary Window

A modeless secondary window, however, allows the user to interact with either the secondary
window or the primary window just as the user can switch between primary windows. It allows
users to perform other operations without dismissing the secondary window. It is also well suited
to situations where the user wants to repeat an action, for example, finding the occurrence of a
word or formatting the properties of text. Modeless secondary windows should be used for
operations that do not need to be completed before the user continues to another operation and
dialogs that do not require immediate attention.

The standard color schemes for client/server user interfaces in the Project EASI/ED environment
are:

• White background should be used for data entry fields and lists with editable data.

• The color for text should be black or a color with a very low luminance.

• A small group of accent colors should be defined for icons and graphics. The colors
should be distinct but muted, with a similar amount of gray.

• The color for the window background should be a gray, which facilitates the sculpted
“3D” look characteristic of graphical controls, especially in the Microsoft Windows
environment.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-42

Reports

To be effective, a reporting capability must combine and transform raw data into meaningful
information. The two decisions that have to be made while designing a report are, on what
medium will the output be recorded, and in what format. A report could be in several different
formats. The commonly used formats are tabular, zoned, graphic (bar charts, column charts, pie
charts, line charts and scatter charts) and narrative. The output media that are typically used are
paper, microfilm, microfiche and on-line display.

Recommended design guidelines for reports are listed below:

• The report layout should be simple to read and interpret. Simplicity leads to ease of use
and improved productivity.

• Only data that is necessary should be presented on the report.

• Graphical output should be used wherever possible. Data should be organized so that the
most important items appear at the beginning of the report and the least important appear
at the end.

• Related data items should be grouped together.

• Every report should have a title, run date, report identifier and page number.

• Arrangement of the data should be visually appealing to the user. Data should be
arranged from left to right, with the primary sort sequence in the left-most column.
Enough space should be left between columns. Printing repetitive data should be
avoided. Key data fields should be strategically positioned and highlighted.

• Section headings should be included to segment large amounts of information.

• There should be column headings for information represented in columns. Legends
should be included where section headings and column headings have been abbreviated.

• Technical jargon and error messages should not be present on the reports.

• Logical groups of data elements should be separated from other groups of data elements
whenever feasible via a blank row.

• Consistent terminology should be used at all times. Abbreviations and codes not known
to the user should be avoided.

• The report should be generated while the information is pertinent to transactions or
decisions.

Reports can be constructed quite easily using report writers, which are tools for creating
customized reports. Report writers allow users to lay out a report format graphically, and can
enable a user to develop sophisticated reports much more quickly than using a query language.
There are numerous report writers available, and the selection of a specific product should
address the following factors:

• Platforms supported by the product (e.g., Windows, Solaris, MVS)
• Ability to execute the reports on the client or on the server
• Flexibility of output options
• Ability of the product to specify table relationships (e.g., Join conditions)

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-43

• Requirement for a runtime component to execute reports
• Complexity of scripts or language syntax used to perform calculations and specify logical

conditions

Development Languages and Tools

Standards for development languages and tools are discussed in detail in Section 2, Framework
for Blueprint Delivery.

Naming Conventions

Naming conventions are an essential part of most application development efforts, especially in
the case of multi-developer projects. While defining naming conventions, a balance needs to be
reached between developing a structure that is meaningful, that imposes some controls on the
developer, and that is easily understandable and yet adaptable enough to be expanded to
accommodate new requirements as these are defined. It is important to be as consistent as
possible to ensure that the meaning of an individual item name is not misinterpreted. However, it
should be noted that tools that generate code do not generally require or even allow developers to
specify naming conventions for variables, objects, or even modules.

A commonly used naming convention for variables is the Hungarian Notation. Its name is
somewhat humorously derived from the ethnic origins of its inventor, Microsoft programmer
Charles Simonyi. The consistent use of Hungarian notation improves the readability and
maintainability of source code by encoding type, scope, and purpose into variable names.

Identifier names in the Hungarian convention consists of:

<prefix> <base type><qualifier>

• Prefix indicates the use of the variable. Examples are “a” (array), “c” (count), “d”
(difference), “g” (global) and “i” (index).

• Base Type is the data type of the variable being named. Examples are “wn” (window),
“scr” (screen) and “sz” (null-terminated string).

• Qualifier is the descriptive part of the name. Example are, page, stitch and current color.

Developers also have the option of choosing the naming convention standards proposed by the
supplier of the development tool. For example, the PowerBuilder class type code is “w” for
windows, “d” for data window and “m” for menu. The consistent use of a documented naming
convention is more important than what that specific convention is.

System Security

System security is discussed in Section 3, Security Requirements.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-44

System/User Documentation and Online Help

System documentation should include every document describing the implementation of the
system from initiation to operation, with the specific documents depending upon the mandates of
the software development methodology that has been employed. Section 2, Framework for
Blueprint Delivery, discusses the lifecycle methodology that ED has adopted.

Online help in the client/server environment can easily be made far more robust than is
reasonably achievable in the Web environment. In addition to a hypertext help file (typically an
online version of the entire user manual) accessible from a menu option on the main menu,
context-sensitive help can be linked to most objects, and the tool tips (balloon help) described
earlier can be applied for most objects. This provides a multi-layered approach to user guidance.
The Microsoft "Window Interface: Application Design Guide" manual provides a comprehensive
description of the standards for online help that apply in the Windows environment, and it is
recommended that these standards be followed to the degree that the development tools employed
will support them.

6.4.1.3 User Interface Standards for Interactive Voice Response Applications

The following subsections specify the menu and navigation guidelines that are recommended
with respect to the user interface development for an IVR under Project EASI/ED. These
guidelines reflect the recommendations made in Section 6.2.1.3, User Interface Standards for
IVR. These standards also embody the design goals identified in Section 6.3.2, User Interface
Design Goals.

IVR Menu Operation Requirements

The design of the logical branching within the menu structure of an IVR application will not
appear significantly different than that of a client/server or Web-based application. The following
are specific requirements with respect to how the menu structure should operate:

• Users should access the IVR system interactive menu by dialing a toll free telephone
number.

• Th IVR menu should provide three to five (3-5) options per branch menu.

• Each option should have a specific logic flow that will provide information to or obtain
information from the user. There should be specific conventions that designate particular
touch-tone buttons as critical to the logic flow’s proper functionality.

• A consistent voice should communicate all options throughout the menu until a user
chooses to exit the menu and terminate the call.

• Once a user has selected an option, thus proceeding through the logic flow, their
information should be gathered and stored in a database.

• All menus, as well as all choices and options, should be brief in description.

• The menu should have a Customer Service Representative option at all menu branches in
case the user decides to select that specific option.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-45

IVR Navigation Requirements

The Gartner Group has developed a comprehensive set of guidelines for the design of IVR
applications, which are presented in Table 6-7. These represent industry best practices and are
adopted as recommendations for IVR applications developed for Project EASI/ED.

Requirements Example/Comments

Allow users to transfer from the IVR
system to a CSR easily.

If the system is accessible 24 hours a day, then a CSR should
be available for any questions.

Allow user access to appropriate options
per menu branch only.

If the system offers three options and the user hits an
inappropriate button, the system should ask for a valid option.

Keep user updated on the "hold time"
estimate.

Users may be impatient, so inform them as to how long or
short the wait may be to speak with a CSR.

Keep IVR scripts professional. Humor is relative - what one person finds humors may be
offensive to another.

Provide consistent options throughout the
menu (common navigation techniques).

If the pound (#) key represents leaving the system in one part
of the script, then it should execute that action no matter what
menu branch the user is on.

Provide a voice that is indigenous to the
user base.

Regional accents may be difficult to understand for some
users.

Provide users with a toll free telephone
number to access the IVR system.

If users must call long distance, then they might not utilize
the system.

Keep the number of options between 3-5
per menu branch.

Users listen more attentively to menu branches that are
concise.

Limit touch-tone input. Too many characters can provide incorrect information and
confuse the user.

Caller should be able to return to the
previous menu.

There should be an option on every branch menu to return to
the previous menu.

Allow the user to exit the system at any
time.

The user has the right to terminate the call without having to
backtrack out of the system.

Provide messages that detail the system's
features and availability.

While a user is waiting for a CSR, have a message that tells
the systems operational hours.

Use common phrases and terms that are
understood by the general public.

Avoid regional clichés, acronyms, and phony terms.

Allow non-touch-tone phone or impaired
callers to access the system.

Direct non-touch-tone phone or impaired users to a CSR
immediately.

Keep menu descriptions clear and concise. When offering the types of financial assistance, provide the
type of loans available, not a description of the loan types.

Provide call transferring from the IVR to a
CSR.

Queue callers properly when they transfer from the IVR to a
CSR.

Request commonly known security
verification information.

For example, do not request a user's grandmother's maiden
name, this type of information is too difficult to obtain.

Provide a contingency plan if the IVR
system shuts down.

Develop a plan in case of the IVR system crashes.

Explain the time frame on user requested
information.

If a financial aid application requires 14 days to process, let
the user know the precise amount of time any process may
require.

Table 6-7: IVR Navigation Requirements

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-46

6.4.1.4 User Interface Standards for Interactive Facsimile Applications

The following subsection addresses standards for Interactive Facsimile applications under Project
EASI/ED. These guidelines reflect the recommendations made in Section 6.2.1.4. These
guidelines also embody the design goals identified in Section 6.3.2, User Interface Design Goals.

Interactive facsimile is unique among the types of user interface described in this document, in
that it is essentially a batch input or batch output method as opposed to on-line interactive.
Standards therefore apply to the formatting of the batch, and are as follows:

• Input forms should be designed to support OCR functionality.

• Wherever possible, each number or character of input should be indicated by marking a
box on a grid that can be easily scanned without error. Standardized tests such as the
Scholastic Aptitude Test (SAT) typically use this formatting.

• Data that is necessarily hand-written (as opposed to indicated by filling in a box) should
be contained within a cell that delineates the proper location on the form for each
character of the hand-written text.

• Output forms and reports should be designed to remain legible when printed at the
minimum level of resolution of a fax machine (i.e., 200 by 96 dots per inch).

• Only Courier and Times Roman fonts should be used in input and output forms.

• Fonts should be at least 10 points in size (12 pitch for Courier).

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-47

6.4.2 Project EASI/ED Web/Internet Application User Interface Model and Navigation
Strategy

This subsection will define a user interface model and navigation strategy for Web/Internet
applications. The recommendations contained here have been implemented in an online, dynamic
prototype. The specific characteristics of the prototype have been documented in the Project
EASI/ED Web/Internet Applications User Interface Format and Style Guidelines, which are
included as Appendix I.

6.4.2.1 User Interface Model

As discussed in subsection 6.2.1.1, the standards that support user interface capabilities in the
Web environment are rapidly evolving. Unfortunately, support for those standards is inconsistent
and incomplete in Web browser products from major vendors such as Netscape and Microsoft.
This severely constrains the functionality that can be safely provided in a user interface if a
design objective is to maximize the target audience and minimize the “barriers to entry”
experienced by that audience.

In light of this, the user interface model devised for Project EASI/ED Web/Internet applications
draws upon both the heritage of the Web itself as primarily a medium for providing access to
documents, and of GUI design for client/server systems. At the same time it implicitly
recognizes the constraints imposed by the current “aggressively heterogeneous” environment of
the Web, where vendors are deliberately deviating from standards in an attempt to distinguish
their products, captivate users, and gain competitive advantage. Figure 6-9 presents an
illustration of the following concepts:

• Content is arranged left-to-right and top-to-bottom, beginning with the organization’s
logo being placed in the upper left hand corner and the organization’s name across the
very top of the page to the right of the logo.

• Content is divided into a set of broad functional categories, which are associated with
menu options across the top of the page below the organization’s name. This
arrangement of main menu options is consistent with standards for menu-driven
interfaces in computer software, such as the Microsoft Windows Interface Guidelines for
Software Design.

• Content within each broad functional category is divided into topics, subtopics, and
(where occasionally necessary) sub-subtopics. Once one of the “main menu” options
across the top of the page has been selected, the next page that is presented will have the
topics associated with that main menu option displayed vertically on the left hand side of
the page as a set of menu options. A brief description of the topics will occupy the
“content” section of the page.

• Once one of the “topic menu” options on the left hand side of the page has been selected,
the next page that is presented will have the topic name as a static (non-link) title on the
left-hand side of the page in an enlarged font size (+1), and below that will be the
associated subtopics displayed vertically on the left hand side of the page as a set of menu
options.

• Should it be necessary to decompose subtopics into sub-subtopics, the same arrangement
as for subtopics will be employed, with the following differences: the topic name

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-48

becomes an active link and the font will be larger (+2 or +3), and the subtopic name will
be the static title below it.

Figure 6-9: Project EASI/ED User Interface Model

In certain instances—specifically when an individual page is a form, and particularly when it is
part of a series of pages that implement a “wizard”-style multi-part form—it may be desirable to
exclude menu options from a page in order to make the series of pages as “modal” as possible and
strictly minimize a user’s ability to deviate from the prescribed pathway through the process.

LOGO

MENU OF BROAD FUNCTIONAL CATEGORIES

MENU OF
SPECIFIC OPTIONS

LOCATION IDs AND
LINKS TO UPPER-

LEVEL OPTION
PAGE(S)

CONTENT

Department of Education (graphic)

Page Name

Content is divided into broad
functional categories

Broad Functional Category

Topic Topic Topic Topic

Subtopics Subtopics Subtopics Subtopics

Content is then decomposed
into topics and subtopics

 Topics and subtopics each have
associated explanatory content that is

displayed in the content area

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-49

Even then, it is not possible to disable the “Back” button on the browser unless the form is
launched in a separate browser instance that does not show the browser menu or toolbar buttons
by definition.

6.4.2.2 Navigation Strategy

The navigation strategy is derived directly from the user interface model defined in the preceding
section. By organizing content into broad functional categories and then successively
decomposing each category into topics, subtopics, and (where absolutely necessary) sub-
subtopics, an elegant and easily navigable hierarchy of information can be constructed. The
navigation strategy addresses navigation to the site from another site; navigation to other sites
from within the site; navigation between pages within the site; and navigation within a single
page.

Initial Navigation from Outside Points

Navigation begins with the URL, which is simply an alias for the rather cryptic Internet Protocol
(IP) numeric address. The URL needs to be clear, concise and distinctive so that the user can
remember it and easily type it, such as www.ed.gov. If possible, the use of subdomain names in
the URL (prefixes to the primary domain name, such as www.easi.ed.gov) should be restricted to
one level of subdomain.

Navigation to Other Websites

External hyperlinks need to be in a designated area or on a specified link bar as opposed to being
intermingled with hyperlinks that lead to content within the site. Generally developers should
refrain from overriding the browser’s own defaults for formatting of hyperlinks. In certain
situations it may be advisable to provide a “text only” link. However, it is preferable to design
the site to be usable by text-only browsers such as Lynx, to avoid the extra work of having to
maintain two sites. Note that the ED World Wide Web Policy and Procedures require that a
notice be given to users when they are exiting a “.gov” domain and linking to a “.com” domain.

Navigation within the Same Website

The user interface model defined in the previous section has the following specific features to
support navigation between pages within the Website:

• “Home” button. The logo in the upper left hand corner of the page should be a link to the
“main” page of the site (usually, but not always, “index.html”). This link should be
enabled on every page but the main page itself.

• Menu bar. This provides links to all the broad functional categories defined for the
content of the Website. It is always at the top of the page. In pages longer than a single
screen, a “return to top” link should be provided, or text versions of the links anchored by
the main menu should be provided at the bottom of the page.

• Topic menu. This section, arranged vertically along the left hand side of the page,
presents the topics and subtopics associated with a main menu option that has been
selected.

• Content area. This defined space where content is presented is bounded by the main
menu on the top and the topic menu on the left.

Project EASI/ED Version 1.0 (Final)
System Wide Design Standards Documents May 24, 1999

6-50

Secondary Menu

In addition to the main menu and topic menus, a secondary menu that provides access to
supporting functionality can be provided. This is particularly appropriate for the first (i.e., the
“home” or “splash”) page of the site. Links accessed from such a secondary menu could include:

• Site Map
• Search
• Index of topics
• Directory of relevant sites
• Help
• Frequently Asked Questions (FAQ)
• Contacts
• Disclaimers/Legal Notices

Where possible, the site map should be dynamic (i.e., each reference to an item should also be a
link to the actual page displaying the item). This is also true of the Index, Contacts and Directory
pages, so that each reference to an item or external site should actually be a link. In the case of
the Contacts page, this would be a “mailto” link that allows the user to send the contact person an
email message if the user’s browser is set up to support email.

Color Coding

An additional feature that extends the user interface model and reinforces the navigation strategy
is the use of color coding. Options on the main menu can be individually color coded, and the
topics and subtopics under a specific main menu option would then be presented in the same
color as the main menu option they are associated with. This immediately lets users know
“where they are” within the site.

Navigation within a Web Page

Every attempt should be made to break content into “chunks” that fit on a single screen so the
user can view all content without scrolling down. If content must of necessity extend beyond a
single screen, an opening paragraph should describe the content, and provide internal hyperlinks
to sections within the page. As stated above, a “return to top” link should be provided at the end
of every section accessed by an internal link and at the bottom of the page. Text versions of the
links anchored by the main menu may also be provided at the bottom of the page.

